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A Word from our 2007 Section Chairs         
JEFF SOLKA 
GRAPHICS  

Hello statistical graphics 
and statistical computing 
community. We are all living 
in exciting times. There 
have been a number of 
exciting recent events and 
number one on my personal 
list is my own election as 
Fe l low of the ASA. I 

consider this the greatest 
honor of my career.

On other less personal note, our section has 
recently provided support for the 2007 useR! 
Conference at Iowa State University. R continues to be 
an exciting language for the teaching, research, and 
specialized statistical graphics development. On a 
related note we all anxiously await the new book by Di 
Cook and Deborah Swayne entitled Interactive and 
Dynamic Graphics for Data Analysis: With R and 
GGobi (Use R ) . They have both been highly 
instrumental in shaping the vision of our section and 
their book provides a convenient tutorial/reference for 
both the educator and self-learner. Their book has an 
anticipated release date of July 2007.

                                       Continues on Page 2..........  

JOHN MONAHAN    
COMPUTING  

Statistics as a Science: A 
Brief Rant

Four years ago, I participated 
in a panel discussion at JSM 
on what to teach in a graduate 
level course in statistical 
computing.  I reported on the 
course that I had been 

teaching for many years and how it had evolved.  
While there was substantial consensus among the 
panelists, everyone admitted some self-doubts on what 
they covered.  
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Computing, Continues !om Page 1.…
In my own department at NC State, we have gone 
through another round of examination of what we 
should be teaching.  We have tweaked the curriculum 
once more, designing a revised computing course to be 
required for doctoral students.  I will have to admit 
that I’m a little nervous about teaching this revamped 
course in the Fall.  Now some of the challenges that I 
am expecting don’t have me so worried.  One familiar 
conceptual problem that seems to loom ever larger is 
programming.  Before personal computers and the 
internet, most students’ first exposure to a computer 
was a programming class.  Nowadays, most students 
think that working on a computer is pointing and 
clicking, and the concept of a dumb box that does ex-
actly what you tell it to do -- and not what you want it 
to do --  is foreign to most students.  Another concep-
tual problem surrounds the conversion of character to 
numeric and finite precision arithmetic.  I have faced 
that one for years and I’m prepared to dispel those 
mysteries.

The challenge that has me so concerned is the addition 
of the design and analysis of simulation experiments to 
this required course.  Why the concern?  We don’t do 
it well as a profession; we do not practice what we 
preach in our courses to the other sciences.  We don’t 
design these experiments well, usually simple one-  or 
two-factor experiments with those factors fully within 
our control.  We overtax limited computing resources 
by performing many more replications than necessary.  
We rarely analyze the results properly. We measure the 
performance of both Method A and Method B on da-
tasets 1, 2, 3, ..., N, and then we don’t include include 
datasets as a blocking factor (or analyze pairs).  We of-
ten fail to report standard errors in our results; we 
don’t properly execute tests or multiple comparisons. 
Standard analysis of simulation experiments published 
in statistics journals would be rejected by editors in 
biological journals without further review. 

Reflecting more broadly, I have collaborated with a 
colleague in entomology for many years, and he has 
many students finishing up their research all at once, 
so lately I’ve been reading a lot about beetles, adelgids, 
and mites.  The importance of the repeatability of    
experiments in that science is reflected in the atten-
tion given to the details in the sections on Methods 

and Materials.  Good science means identifying Model 
XXy bucket and ZZ03 plastic bag.   At first I found 
this practice amusing, but its importance became evi-
dent upon hearing how a chemical now known as 
juvabione was once as just a mysterious effect given the 
name of ‘paper factor.’  In our profession we rarely de-
scribe our simulation experiments in enough detail for 
anyone else to repeat our work.  Years ago, reproducing 
a simulation study or comparing to another              
researcher ’s experiment was very difficult when      
random number generators and software were not 
portable.  Now we have no such excuses.  

So my challenge this fall is to ensure that the doctoral 
students in my department can perform experiments 
as good scientists.  A very tall order.  A challenge for us 
in the statistical computing community is to raise the 
standards of our profession so that we may be re-
spected by our peers as a sound science.

 

   

Graphics, Continues !om Page 1.…

We look forward to the JSM in Salt Lake City 
Utah. Our program chair Simon Urbanek and our 
program chair-elect David Hunter have organized an 
exciting program of invited sessions, contributed 
sessions, and roundtables. Simon provides additional 
details later in this newsletter. Without stealing too 
much of his thunder I would like to mention a few 
highlights about the meeting.

The section is sponsoring a continuing education 
course, “Graphics of Large Datasets,” given by Antony 
Unwin and Heike Hofmann. Antony was recently 
elected Fellow of the ASA, congratulations Antony. We 
are also sponsoring a Topic Contributed Session, the 
Statistical Computing and Statistical Graphics Paper 
Competition and numerous roundtable activities 
including a luncheon with George Michailidis on 
“Graphical Data Mining of Network Data,” and a 
coffee roundtable on “Network Visualization,” with 
Deborah Swayne. The area of analysis/visualization of 
network data is very timely and highly relevant to a 
myriad of application areas. There will of course be our 
traditional joint mixer with the Statistical Computing 
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Graphics, Continues !om Page 2.…

section which if priors hold true should be highly 
entertaining. There are many other exciting session 
but discussions of these must be relegated to Simon’s 
article within this newsletter.

Before closing I would like to encourage the 
section members to help support the activities of their 
sister sections. During the winter of 2007 I, along with 
Ed Wegman, organized the Second Annual Conference 
on Quantitative Methods in Defense and National 
Security. This conference was sponsored by the ASA 
Section on Statistics in Defense and National Security 
and we had around 100 attendees at the conference 
which is not bad for Fairfax Virginia in the midst of a 
snow storm. There were a number of talks at the 
conference that illustrated how visualization can play a 
prominent role in this discipline area. You can learn 
more about this year’s conference by visiting http://
www.galaxy.gmu.edu/QMDNS2007/. The location for 
next year’s conference is still being worked out. 

Looking to the future, our program chair-elect, 
David Hunter will be looking for ideas for invited 
sessions for JSM 2008. David can be reached at 
dhunter@stat.psu.edu

Monday, July 30th, 7:30 PM       
Statistical Computing and Graphics  Business 

Meeting and Mixer
   Convention Center, Ba!room C
We expect to see you there 

AADT95−05

SR 14

Calgrove
Lyons

McBean
Valencia

MagicMountainRyeCanyon
SR 126

HasleyCanyon

ParkerLakeHughes

Templin

VistaDelLago

SmokeyBear

SR 138SQuailLakeSR 138N

Gorman

FrazierMountain

Lebec

FortTejon

Grapevine

WheelerRidge

SR 99

Do you know what this graph represents? It was 
contributed by Jan Deleeuw, UCLA Stats. If you know 
what it is, contact the Editors of SCGN and let us 
know. The winner will be announced at the Statistical 
Computing and Graphics Mixer.  The author of the 
graph can not participate in this competition 
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Editorial Note
Juana Sanchez  and Andreas Krause

 With this newsletter we inaugurate the new co-editor 
for Stats Graphics,  Andreas Krause. 
He  is    possibly the first European 
user of the S        Language (that later 
evolved into S-Plus) in the late 1980s.       
Possibly best known for books like 
“The Basics of S-Plus” (fourth       
edition by now, Springer-Verlag) or    
“Applied Statistics in the Pharmaceutical Industry” 
(Springer, 2001),    Andreas is heavily involved in       
statistics and computing all along, including modeling 
and   simulation,         nonparametric density            
estimation and regression, Markov Chain Monte Carlo      
techniques, all sorts of programming, and time and 
time again - graphics.    Recently,  Andreas has given 
presentations and          tutorials at various occasions 
on “Graphing patient data” (short course at the 2006 
Deming conference, sunrise school at the annual    
meet ing o f the Amer ican Assoc ia t ion o f                
Pharmaceutical Scientists (AAPS), and ENAR spring 
meeting presentation). He specializes in modeling and 
simulation - meaning: building models of patients’     
response to drug therapy and simulating    possible 
scenarios and outcomes of treatment with  different 
doses, in special populations. Andreas is working in the 
pharmaceutical industry, currently for Pharsight     
Corporation, consulting to pharmaceutical companies 
on modeling and simulation and strategic decision 
making. Welcome to SCGN Andreas!! 

In this issue of the newsletter, we have  great  
statistical computing contributions. Holger Schwender 
and Tina Müller present R functions that allow  the 
computat ion of thousands of test s tat i s t ics 
simultaneously with R, and they illustrate how this 
works using microarray data. Robert Jennrich takes us 
back in history with a tour of the early days of 
statistical computing and the role that BMDP played 
in that history. He played a big role in those early days 
and the software made possible computing with 
unbalanced designs. There is a lot to learn from his  
piece.  Heather Turner and David Firth present “gnm“, 
an R package for fitting generalized nonlinear models. 
These authors won the Chambers Award this year, so 

here is an opportunity to see why.  Congratulations!! 
Visit the News Sections and the program overview for 
JSM. It is  important that you see who are the winners 
of the student paper competition, best paper and 
Chambers award. JR Lockwood presents them in the 
News Section.  The  JSM program  co-sponsored by 
the Stats Computing and Graphics Sections is really 
tempting. 

This will be the last issue co-edited by Juana 
Sanchez.  The Stats Computing Section is looking for a 
new co-editor. She enjoyed very much the time spent 
editing this newsletter and encourages anybody 
interested to apply for the position. See the insert on 
page 5 for more details. 

We expect to see you in Utah in July. 

Statistical Computing 2007 

The 39th meeting on Statistical Computing on Re-
isensburg Castle provides a good opportunity to ex-

change ideas in a wonderful setting: an old castle be-
tween Stuttgart and Munich in the South of Germany.

After the talks, participants meet in the bays of the 
castle to continue discussions in a very relaxed at-

mosphere.
The conference takes place from July 1 to July 4, 

2007.
The program is online at 

http://www.dkfz-heidelberg.de/biostatistics/Reisensbur
g2007/Welcome_en.html

                                                                                VOLUME 18, NO 1,  JUNE 2007

	

 PAGE 4

http://www.dkfz-heidelberg.de/biostatistics/Reisensburg2007/Welcome_en.html
http://www.dkfz-heidelberg.de/biostatistics/Reisensburg2007/Welcome_en.html
http://www.dkfz-heidelberg.de/biostatistics/Reisensburg2007/Welcome_en.html
http://www.dkfz-heidelberg.de/biostatistics/Reisensburg2007/Welcome_en.html


Featured Article
COMPUTING THOUSANDS OF TEST 
STATISTICS SIMULTANEOUSLY IN R
Holger Schwender and Tina Müller
University of  Dortmund, Germany
holger.schwender@udo.edu
tmueller@statistik.uni-dortmund.de

1.  Introduction

    In many areas of modern science, data for a vast 
number of variables are generated. An important and 
common goal of the analysis of such high-dimensional 
data is the identification of variables showing values 
that differ substantially between groups or conditions.
    Instead of computing the value of a test-statistic   
appropriate for the particular situation for each of 
thousands of variables separately, it would be desirable 
to determine the statistics for all these features        
simultaneously.
     In this article, we give an overview of R functions 
enabling such simultaneous calculations for different 
types of problems (e.g., two-class or multi-class) and 
different types of data (e.g, continuous or categorical), 
and compare these functions with each other.
       For the determination of the computation times, 
we use an AMD Athlon XP 3000+ machine with one 
GB of RAM on which Windows XP is installed.
        Since data from microarray experiments are the 
most popular example for high-dimensional data, it is 
not surprising that all the R packages mentioned in 
this article are available at www.bioconductor.org 
( some of them are a l so a va i l ab le a t 
http://cran.r-project.org).

2.  Two-Group Case

Assume we would like to analyze gene expression 
data from an experiment comprising 50 Affymetrix 
HG-U133_ Plus_2 chips, the most widely used type of 
microarrays. This means that the data matrix X 
consists of m = 54,675 rows and n = 50 columns with 
each row corresponding to a variable and each column 

WANTED: NEWSLETTER CO-EDITOR, 
STATS COMPUTING
  
  
The Statistical Computing and Graphics Newsletter 
(SCGN)  needs a new co-Editor on the Stat Computing  
side. This is a great opportunity to serve the Statistical 
Computing Section and the ASA in general.  Co-editing 
it is a volunteer job with many rewards. 

The Newsletter is a joint product of the Statistical   
Computing and Statistical Graphics Sections of the ASA, 
hence having two editors, one for Stats Computing and 
another for Graphics. There are two issues per year: one 
in the Fall and one in the Spring.  The spring issue      
contains a lot of information about the upcoming ASA    
meetings, other meetings sponsored by the two sections,             
announcements of the competition awards and feature 
articles that       anticipate future trends in Stats        
Computing and Graphics. The Fall issue talks about what 
happened in those past meetings, announces the        
competitions and also contains feature articles of high 
interest.  Both the Fall and the Spring issues contain 
other interesting news and the Chair’s columns plus 
some special columns, depending on availability of      
contributions for them. 

 The Editors of SCGN select contributions from         
different authors after extensive review   and decide the 
final contents of the newsletter and what format the 
newsletter will  have.  They follow up on authors to    
guarantee a timely delivery once their article is accepted, 
collect news, gather columns from contributors and 
make sure that everything is done in a timely fashion and            
appropriately. All this material is then edited and entered 
into a newsletter semi-template (currently in Pages, a  
product of Apple’s iWorks, but not necessarily so for 
ever). After the Executive Committees of both sections 
have approved, and the authors have proofed  their 
pieces, the Newsletter is then posted online and Section 
members are notified that it is ready.  Lately we have also 
been sending a postcard through regular mail, and will 
continue to do so. 

This is a volunteer job with lots of room for creativity 
and for making the ASA sections you are part of visible 
to a wider group of statisticians.   
 
 If you are interested in becoming a Co-editor,  please 
contact the Statistics Computing Chair, John Monahan 
by email. His email address is  monahan@ncsu.edu
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to a sample/observation. As the computation time does 
not depend on whether real or simulated data are used, 
this matrix is simulated by

> m <- 54675
> n <- 50
> X <- matrix(rnorm(m * n,10, 3), m)

Let’s further assume that the vector

> cl <- rep(0:1, e = n / 2)

contains the class labels of the observations.
The “classical’’ way to compute the value of the        

t-statistic for testing each of the variables is to call the 
R function t.test for each row of X separately, 
which can either be done by

> system.time(
+   for(i in 1:m)
+     t.test(X[i, ] ~ cl)$stat
+ )
   user  system elapsed
 252.38    0.09  252.52

or less time-consuming by

> system.time(
+   for(i in 1:m)
+     t.test(X[i, cl == 0],
+        X[i, cl== 1])$stat
+ )
   user  system elapsed
  61.02    0.02   61.07

Another possibility is to use the function apply, i.e. 
to call

> compT <- function(x, cl){
+   t.test(x[cl == 0], x[cl==         
+     1])$stat
+ }
> system.time(
+   apply(X, 1, compT, cl = cl)
+ )
   user  system elapsed
  62.54    0.07   62.75

to apply compT to each row of X. (There are also other 
functions for applying a particular function to each 
element of an object. For example, lapply and sap-

ply access each element of a list – or each column of a 
data.frame object.)

Although the two latter ways for calculating the       
t-statistics save a lot of time, they are still very       
time-consuming – in particular if p-values should be 
computed based on a permutation method.

A possible solution to accelerate this process is to 
use the functions rowSums and rowMeans – that 
calculate the rowwise sums and means, respectively, of 
a matrix – to write your own function for determining 
the t-statistics for all rows of X simultaneously.
As t.test by default computes Welch’s t-statistic, the 
corresponding rowwise function might be given by

rowtstat <- function(X, cl){
    X0 <- X[, cl == 0]
    X1 <- X[, cl == 1]
    m0 <- rowMeans(X0)
    m1 <- rowMeans(X1)
    n0 <- sum(cl == 0)
    n1 <- sum(cl)
    sq <- function(x) x * x
    s0 <- rowSums(sq(X0 - m0))
    s0 <- s0 / (n0 * (n0 - 1))
    s1 <- rowSums(sq(X1 - m1))
    s1 <- s1 / (n1 * (n1 - 1))
    (m0 - m1) / sqrt(s0 + s1)
}

Applying this function to X is about 130 times faster 
than employing t.test, as the computation time of 
rowtstat is 0.47 seconds.

> system.time(rowtstat(X, cl))
   user  system elapsed
   0.46    0.01    0.47

A more convenient solution is to use the already    
existing functions rowttests and mt.teststat 
available in the packages genefilter and        
multtest, respectively. While in mt.teststat 
Welch’s t-statistic is computed by default, the ordinary 
t-statistic assuming equal group variances is              
determined in rowttests.

> library(genefilter)
> cl2 <- as.factor(cl)
> system.time(
+   rowttests(X, cl2)$stat
+ )
   user  system elapsed
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   0.18    0.00    0.18

> library(multtest)
> system.time(
+   mt.teststat(X, cl)
+ )
   user  system elapsed
   1.61    0.06    1.67

Additionally to Welch’s t-statistic, mt.teststat  
provides the possibility to employ the ordinary and the 
paired two-class t-statistic and the one-class t-statistic. 
The latter can also be determined using rowttests.

Table 1. Computation times (in seconds) of four     
functions for calculating t-statistics for different    
numbers of variables and observations.

50 Observations
10,000 54,675 100,000

t.test 11.24 61.07 113.66
rowtstat 0.06 0.47 0.80
rowttests 0.02 0.18 0.24
mt.teststat 0.20 1.67 3.07

100 Observations
10,000 54,675 100,000

t.test 11.53 63.91 117.07
rowtstat 0.12 0.91 1.54
rowttests 0.04 0.24 0.32
mt.teststat 0.37 3.23 5.10

In Table 1, the computation times for the above and 
other testing situations are summarized. This table 
shows that rowttests is less time-consuming than 
r o w t s t a t  which in turn i s f a s ter than 
mt.teststat. In comparison to a one-by-one       
determination, all these functions lead to an immense 
reduction of computation time.

3.  Wilcoxon Rank Sums

In addition to t-statistics, it is also possible to employ 
mt.teststat for computing (block) F-statistics (see 
Section 4) and standardized Wilcoxon rank sums. In-

stead of a t-test, a Wilcoxon rank sum test can thus be 
applied to the data described in Section 2 by calling

> system.time(
    mt.teststat(X, cl, test = 
+     "wilcoxon")
+ )
   user  system elapsed
  11.64    0.06   11.74

   However, this calculation takes almost seven times 
longer than the determination of the rowwise                
t-statistics. This relatively long computation time is 
due to the separate application of the function rank 
to each of the rows of X which requires more than 
80% of the actual computation time.

> Xr <- X
> system.time(
+   for(i in 1:m)
+     Xr[i, ] <- rank(Xr[i, ])
+ )
   user  system elapsed
   9.71    0.02    9.76

It would therefore be desirable to have a function 
enabling the determination of the ranks of all rows of 
X simultaneously. Unfortunately, such a function does 
not currently exist.

But the function rowQ in the package Biobase 
enables the rowwise computation of a specific quantile. 
For example,

> rowQ(X, i)

returns a vector of length nrow(X) containing the ith  
smallest value of each of the variables represented in 
X. Since typically the number of observations in    
high-dimensional data is much smaller than the     
number of variables, the use of rowQ in a function that 
calculates the ranks for all variables simultaneously 
might reduce the computation time. Such a function is 
given by

rowRanks <- function(X){
    require(Biobase)
    Xr <- X
    for(i in 1:ncol(X)){
        tmp <- rowQ(X, i)
        Xr[X == tmp] <- i
    }
    Xr
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}

Figure 1. Computation times (in seconds) for the    
applications of three functions for determining the 
ranks of a matrix rowwise to different numbers of    
observations and variables, where for rowRanksWilc 
it is assumed that there are two equally sized groups of 
observations.

Figure 1, however, reveals that rowRanks only leads 
to an improved computation time if the number of 
observations is small.

Another idea is to count rowwise for each             
observation how many of the values of the respective 
variable are smaller than or equal to the value of this 
observation, i.e. to compute the ranks of each           
observation for all rows simultaneously. Furthermore, 
since the Wilcoxon rank sum is given by the sum over 
the ranks of the observations from one of the groups, 
it is only necessary to perform this calculation for the 
observations from one of the groups. This idea is im-
plemented in the function 

rowRanksWilc <- function(X,cl){
    ids <- which(cl == 1)
    Xr <- matrix(0, nrow(X), 

       length(ids))
    for(i in 1:length(ids))
        Xr[ ,i] <- rowSums(X <=  
            X[,ids[i]])
    Xr
}

which is available – along with the function rowWil-
coxon for computing rowwise Wilcoxon rank sums or 
signed ranks – in siggenes version 1.11.1 and later. 
Figure 1 shows that in the case of equally sized groups 
rowRanksWilc leads to a lower computation time 
than applying the function rank to the rows of X if the 
number of observations is smaller than 100.

4.  Multi-Group Case

Now we would like to generalize the two-class case to 
the k group case in which the F-statistic is an           
appropriate score for testing if a variable exhibits     
values that differ substantially between the k groups. 

As mentioned in Section 3, mt.teststat provides 
the possibility to compute the values of the F-statistic 
for all rows of X simultaneously. Moreover, a function 
called rowFtests is available in the package gene-
filter that also allows this calculation.
The main difference between rowFtests  and the 
other functions mentioned in this article is that 
rowFtests employs matrix algebra, whereas         
functions such as mt.teststat and rowttests 
are based on C-code. It is therefore not very surprising 
that mt.teststat is faster than rowFtests (see 
Table 2). Table 2 also reveals that contrary to 
rowFtests the computation time of mt.teststat 
does not seem to depend on the number of groups.

Table 2. Computation times (in seconds) for the ap-
plications of both rowFtests and mt.teststat to 
a 54,675 x 50 matrix with varying numbers of groups (3, 
4, 5, 10).

3 4 5 10
mt.teststat 1.24 1.24 1.23 1.25
rowFtests 1.83 1.92 2.00 2.59
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5.  Fitting Linear Models 

Another interesting task is to fit  a linear model for each of 
the variables represented in our 54,675 x 50 data matrix X 
(see Section 2). To simplify matters, assume that  the    
vector

> cl <- rep(0:1, e = n / 2)

of the group labels is the only explanatory variable. Then, 
a linear model for each variable can be fitted by

> lLM <- vector("list", m)
> system.time(
+   for(i in 1:m)
+     LM[[i]] <- lm(X[i,] ~ cl)
+ )
   user  system elapsed
 388.60    1.25  396.04

However, it  is also possible to fit all 54,675 models at 
once, e.g., by employing matrix algebra: In the case of a 
single variable, the estimates for the coefficients can be 
determined by

where Z is the design matrix and y contains the values of 
the variable of interest. If we set 

             

then all linear models are fitted at once, and 

€ 

β
∧

  is a   
matrix containing the estimates for all coefficients of 
all models. Since transposing the high-dimensional   
matrix X is more time and memory consuming than 

transposing      ( ) ZZZA 1 ′′= −   it is better to fit these 
models  by computing 

i.e. by

> system.time({
+ A   <- t(solve(t(Z) %*% Z) %*% t(Z))
+ beta   <- X %*% A
+ })
   user  system elapsed
   0.12    0.00    0.12

This reduces the computation time from more than six 
minutes to much less than one second. However, it  only 
returns the estimates for the coefficients. Although 
most of the other statistics returned by lm can also be 
obtained by matrix calculation, it would be more     
convenient to use an already existing function that 
generates these values.

Fortunately, such a function does exist: lm. Taking a 
close look at the help file for lm reveals that if y in 
lm(y ~ x) is a matrix, a linear model will be fitted to 
each column of y. (Actually, we found this feature of 
lm while looking at the function lmFit of the      
package limma which has been particularly written 
for fitting linear models in high-dimensional data.) 
Thus, instead of calling lm  for each row of  X          
separately, all models can be fitted at once by

> system.time(
+ lm.out   <- lm(t(X) ~ cl)
+ )
   user  system elapsed
   3.31    0.20    3.51

6.  Categorical Data

High-dimensional data is not necessarily continuous. 
The Affymetrix GeneChip Mapping 500K Array Set, 
e.g., provides data for calling the genotypes of about 
500,000 SNPs (Single Nucleotide Polymorphisms), 
where a SNP is a single-base pair position in the DNA 
sequence at which different base alternatives exist. 
Since a SNP can typically take three forms called   
genotypes, Pearson’s χ2-statistic is an appropriate score 
for testing if the distribution of a SNP differs between 
several groups.

The package scrime which will be available at      
Bioconductor and/or CRAN in August  or September 2007 
(a pre-version of this package is available by request from
the authors) contains the function rowChisqStats 
which cannot  only be employed to identify variables 
showing a distribution that  differs between several 
groups, but  also to test  each pair of rows of a matrix if the 
corresponding variables are independent.

The basic idea of rowChisqStats is to consider an 
indicator matrix for each level of the variables, and to use 
matrix algebra to compute the values of Pearson's χ2-
statistic for all variables simultaneously (for details, see 
Schwender, 2007). Although this function has been 
written for a situation in which all variables exhibit the 
same number of categories and none of the values are 
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missing, rowChisqStats can also cope with missing 
values and variables with differing numbers of levels.

Table 3. Computation times (in seconds) of both 
rowChisqStats and the individual calculation of 
Pearson’s χ2-statistics for different numbers of         
variables and observations. Each of the m variables can 
take three levels, and each of the n observations be-
longs to one of two classes.

n = 200
m rowChisqStats chisq.test

1,000 0.05 2.64
10,000 0.63 26.74

100,000 6.16 274.96

n = 1,000
m rowChisqStats chisq.test

1,000 0.40 3.35
10,000 2.39 34.42

In Table 3, a comparison of the computation times of 
the applications of r o w C h i s q S t a t s and 
chisq.test to SNP data from case-control studies is 
presented. This table shows that rowChisqStats is 
much faster than applying chisq.test separately to 
each variable. Additionally, Table 4 reveals that the 
computation time of rowChisqStats depends on 
the (maximum) number of levels the variables can take, 
but not on the number of groups.

Table 4. Computation times (in seconds) of row-
ChisqStats for different numbers of variables and 
different values of c, the number of levels a variable can 
take, and r, the number of classes to which the 200 
observations belong.

1,000 10,000 100,000
r = 2, c = 3 0.05 0.63 6.16
r = 2, c = 5 0.07 1.03 9.98
r =2, c = 10 0.15 2.04 61.82
r = 3, c = 3 0.05 0.64 6.18
r = 6, c= 3 0.05 0.62 6.46

7  Discussion

      In this article, we have presented already existing as 
well as new functions for computing statistics for all 
rows of a data matrix simultaneously. We have also 
shown that employing these functions leads to a      
substantial reduction of the computation times in 
comparison to applying standard functions to each of 
the rows/variables separately.

However, there are more functions implemented for 
similar purposes: For most of the already existing   
functions with prefix row, a version is available       
enabling to determine the statistics columnwise. Other 
examples a re the funct ion 
mt.teststat.num.denum from the package 
multtest that returns the numerator and the       
denominator of the test statistics separately, or the 
functions rowpAUCs and rowSds from the package 
genefilter that allow rowwise calculations of, on 
the one hand, ROC curves and the partial areas under 
the curve, and on the other hand, the standard         
deviations.

Moreo ver, funct ions such a s 
mt.sample.teststat (from the multtest pack-
age) or chisq.test can be applied to a single       
variable to determine the values of the test statistic for 
all permutations of the group labels simultaneously. 
There also exist combinations of these two types of 
simultaneous computations: The functions mt.maxT 
and mt.minP (again, from the multtest package), 
e.g., provide the possibility to calculate permutation 
based p-values for all rows of a matrix using the step-
down multiple testing procedures described by West-
fall and Young (1993).
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THE SCOOP ON  DATA VISUALIZATION

 Highly recommended, rated M (Must see)!

Movies:

We have recently come across a wonderful piece of 
presenting interactive data analysis. Hans Rosling, a 
researcher of global health at Sweden’s Karolinska 
Institute, analyzes trends in global data like life 
expectancy and child mortality in a lively, entertaining 
and highly educational presentation.

We think that the movie is well worth your time 
(some 20 minutes), and it might well prove 
motivational for students to step into data analysis 
and statistics.
The movie of the presentation can be downloaded 
from http://www.ted.com/index.php/talks/view/id/92

For those of you interested in what goes on outside 
academia, take a look also at what statistical offices of 
several countries are doing to improve statistical 
literacy and interest in data by citizens. Check this 
out.
h t t p : / / w w w . o e c d . o r g / d o c u m e n t /
12/0,2340,en_21571361_31938349_37725196_1_1_
1_1,00.html

Books: 

 Michael Friendly's online book on visualization of 
Categorical data  

http://www.math.yorku.ca/SCS/vcd/

http://www.uv.es/visualstats/Book/

We would like our readers to be aware of things going on 
in and outside academia. Send us unusual links, things 
that are not usually appearing in the main stream. As far 
as they deal with statistical graphics and computing we 
promise to submit it to thorough review. 

Tools for Computing
GENERALIZED NONLINEAR 
MODELS  IN R
Heather L. Turner and David Firth, University of 
Warwick
Heather.Turner@warwick.ac.uk
David.Firth@warwick.ac.uk 
http://go.warwick.ac.uk/heatherturner/gnm

1. Background

In this article we introduce the R package gnm, which 
provides tools for the specification, estimation and       
inspection of generalized nonlinear models. A         
generalized nonlinear model assumes that the          
variance of a response variable Y is equal to, or        
proportional to, a known function of its mean and that 
this mean is related to a nonlinear function of           
parameters via a link function, as follows:

                           

€ 

g[E(y)] =η β( )                        (1) 

Thus a generalized nonlinear model may be considered 
as an extension of a generalized linear model, in which 
some terms are nonlinear in the parameters; or as an 
extension of a nonlinear least squares model, in which 
the variance of the response may be dependent on the 
mean.

The aim for gnm was to implement a much more gen-
eral version of the Xlisp-Stat package Llama  (Firth, 
1998), which was designed to fit log-linear and         
multiplicative models for contingency tables. Hence 
the development of  gnm has been strongly motivated 
by models with multiplicative terms, such as             
row-column association models (Goodman, 1979), 
UNIDIFF (uniform difference) models for social     
mobility (Xie, 1992; Erikson and Goldthorpe, 1992), 
GAMMI (generalized additive main effects and       
multiplicative interaction) models  (e.g., van Eeuwijk, 
1995) , Lee-Carter models for trends in age-specific 
mortality (Lee  and Carter, 1992), diagonal-reference 
mode l s for dependence on a square or                   
hyper-square classification  (Sobel 1981,  1985),      
Rasch-type logit or probit models for legislative voting    

                                                                                VOLUME 18, NO 1,  JUNE 2007

	

 PAGE 11

http://www.ted.com/index.php/talks/view/id/92
http://www.ted.com/index.php/talks/view/id/92
http://www.oecd.org/document/12/0,2340,en_21571361_31938349_37725196_1_1_1_1,00.html
http://www.oecd.org/document/12/0,2340,en_21571361_31938349_37725196_1_1_1_1,00.html
http://www.oecd.org/document/12/0,2340,en_21571361_31938349_37725196_1_1_1_1,00.html
http://www.oecd.org/document/12/0,2340,en_21571361_31938349_37725196_1_1_1_1,00.html
http://www.oecd.org/document/12/0,2340,en_21571361_31938349_37725196_1_1_1_1,00.html
http://www.oecd.org/document/12/0,2340,en_21571361_31938349_37725196_1_1_1_1,00.html
http://www.math.yorku.ca/SCS/vcd/
http://www.math.yorku.ca/SCS/vcd/
http://www.uv.es/visualstats/Book/
http://www.uv.es/visualstats/Book/
mailto:Heather.Turner@warwick.ac.uk
mailto:Heather.Turner@warwick.ac.uk
mailto:David.Firth@Warwick.ac.uk
mailto:David.Firth@Warwick.ac.uk
http://go.warwick.ac.uk/heatherturner/gnm
http://go.warwick.ac.uk/heatherturner/gnm


(e.g., de Leeuw 2006), and stereotype multinomial       
regression models for ordinal response (Anderson,  
1984).  Nevertheless, the package provides a very    
general fitting algorithm with a simple, flexible inter-
face that allows a wide range of generalized nonlinear 
models to be specified. 

2. Implementation

The model-fitting function provided by the gnm     
package, also named  gnm, has been patterned after   
glm --- the function provided in the base distribution 
of R for fitting  generalized linear  models. Therefore 
the manner in which models are specified and the    
majority of functions provided for model inspection 
will be familiar to users of R. 

Models are specified in a symbolic form, with  a special 
class of functions providing the mechanism for        
nonlinear terms to be included in the predictor. A  
number of these  nonlin  functions are distributed in 
the package, and    user-defined nonlin  functions are 
also supported. In principle any differentiable         
nonlinear term can be specified in this way. 

With such generality, it would be difficult to define a 
set of rules by which identifiability constraints could 
be automatically applied, as they can be for linear      
models. This difficulty is circumvented in  gnm by the 
use of a fitting algorithm that can work with            
over-parameterized representations of models.  Model 
parameters are estimated via an iterative weighted least 

squares a lgorithm, using the Moore -Penrose                                                  
pseudoinverse to handle the rank-deficient design matrix.  
 
By default therefore,  gnm applies only minimal          
identifiability constraints.  An arbitrary parameterization 
-determined at  random - is used for nonlinear terms which 
involve parameter redundancy.  Inference on identifiable 
parameter contrasts can be conducted after the model has 
been fitted, by using supporting functions in the package. 

3. Multiplicative Interaction Models

As noted earlier, there are several examples of             
generalized nonlinear models that have been proposed 
for the analysis of contingency tables. Here we con-
sider the uniform difference (UNIDIFF) model    (Xie,  
1992;  Erikson and Goldthorpe, 1992) for three-way 
contingency tables: 

    
                                                                                 

The third term in Equation 2  represents a simplified 
three-way interaction in which the association between 
two dimensions of the table varies in strength over the 
third dimension.  We shall apply this model to a 
contingency table from Yaish(1998, 2004), which is 
distributed in the package as the yaish data set. The 
table is classified by three factors: father’s social class 
(orig); son’s social class (dest); and son’s education 
level (educ). Figure 2  shows how the UNIDIFF 
model can be fitted to the yaish data using the  
gnm function.  The first argument to gnm  is the 
symbol ic model formula . The mult ip l icat ive 
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logµijk =α ik + β jk + exp δk( )γ ij                     (2) 



interaction is specified using the nonlin functions Mult 
and Exp, which specify respectively the product of 
predictors and the exponential of a predictor.  

The ofInterest argument is a feature of gnm which 
allows the user to specify a subset of parameters that 
are of particular interest; these parameters are then 
treated specially by supporting functions, for example 
when printing model summaries. In this case the      
log-multipliers of the association between the social 
class of father and son (δk in Equation 2) are identified
by a regular expression which will be matched against 
the generated parameter names. 

The remaining arguments are unchanged from glm: 
the family argument which specifies the assumed 
link and variance functions; the data argument which 
specifies the data set and the subset argument 
which is used here to omit a part of the contingency 
table with many empty cells. 

The multipliers exp(δk)  of the association between 
father’s social class and son’s social class are not       
identified here, but we can contrast each multiplier to 
that of the lowest education level and obtain standard 

errors for the differences 

€ 

δk
∧

−δi
∧

 by  using the           
getContrasts function, as shown in Figure 1.

The getContrasts function returns an object that 
is compatible with functions from qvcalc, an R package 
for computing quasi variances for factor effects in     
statistical models (Firth 2003; Firth and de Menezes 
2004). It is a function from qvcalc that produces the 
summary shown in Figure 1, and the plot function 
from this package allows us to display graphically the 
estimated contrasts, as in Figure 3. 

We can estimate confidence intervals for the 
UNIDIFF multipliers based on the profile likelihood. 
It is only possible to profile parameters that are      

identified, so we first update the model with the     
constraint on the first level on the education multiplier 
and then prof i le the dev iance around each                
parameter, using the commands shown in Figure 4.

The profile traces shown in Figure 5 demonstrate the 
asymmetric behaviour of the log-likelihood function 
that is typical of many nonlinear models. The         
profile  function in the   gnm package is designed 
to detect such behaviour and adjust the    profile points 
accordingly. Confidence intervals can be computed 
from the profile output as shown in Figure 6. In 
the case of the last education multiplier, an asymptote 
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has been detected and the lower confidence limit is 
therefore shown as negative infinity. 

4. Multinomial Regression

Multinomial response models may be fitted with  gnm 
by using the well-known equivalence between          
multinomial and (conditional) Poisson likelihoods.    
We illustrate this here by applying the stereotype 

model proposed by Anderson  (1984)  for  ordered   
categorical data. This model is a special case of the 
multinomial logistic model, in which the probability 
that a response belongs to category c given values of 
the covariates x is defined as:
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€ 

pr(yi = c | xi) =
exp βoc + γ cβ

T xi( )
exp βor + γ rβ

T xi( )r∑
       (3)  

We shall use one of the example data sets from        
Anderson (1984), taken from a study of patients with 
back pain. The data are observations of three prognos-
tic variables and an ordered factor quantifying the       
progress of each patient. These data are available in 
the gnm package as the data set backPain.  

                 

€ 

loguic =α i + βoc + γ c βr
r
∑ xir      (4)  

                               

We can fit the stereotype model to the backPain 
data by re-expressing the categorical data as counts and 
fitting the log-linear model

The g nm package provides a uti l ity function              
expandCategorical to perform the required data 
manipulation: Figure 7 demonstrates its use. 

The parameters of interest in the stereotype model are 
the category-specific multipliers (γc in Equation 3). In 
order to make these parameters identifiable, we need 
to constrain both their location and scale. The location 
may be const ra ined by se t t ing one o f the          
category-specific multipliers to zero. As we have         

  
already seen, this constraint may be specified in the 
ca l l to g n m , o r may be app l ied by us ing                  
getContrasts after the model has been estimated. 
In this case, we shall use the former approach, applying 
the scale constraint at the same time. The scale can be 
constrained by fixing one of the slope parameters, say   
β1 in Equation 4, to be equal to 1. This can be achieved 
by specifying the first covariate as an offset to the     
second multiplier, as shown in Figure 8. 

The intercept in the log-linear model (Equation 4) is 
subject-specific. Rather than specifying this term via 
the model formula, we have used the eliminate   
argument to  gnm. This feature of gnm generalizes a 
useful device seen previously in the  GLIM4 statistical 
modelling system (Francis et al., 1993, sec. 8.2.7),  
whereby computational efficiency is substantial       
improved if a model includes the additive effect of a 
(typically nuisance) factor with a large   number of    
levels. In addition, the effects of the eliminated factor 
are by default assumed not be        parameters of       
interest, so they are excluded from printed model 
summaries such as the summary of coefficients shown 
in Figure 9. 

5. Summary

The gnm  package provides a flexible model-fitting 
function for generalized nonlinear models, with       
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supporting functions for model inspection and         
inference. The package is distributed with a            
comprehensive manual, that provides plenty of        
examples based on practical applications. This manual 
can also be downloaded from the gnm webpage
{http://go.warwick.ac.uk/heatherturner/gnm}. 
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History of Statistical 
Computing 
BMDP and Some Statistical           
Computing History 
Robert Jennrich, 
University of California, Los Angeles
rij@stat.ucla.edu

The first package of BMDP statistical programs       
appeared in 1961. For at least a decade this was the 
most extensively used statistical package. The early 
development of statistical software is discussed here 
from the perspective of BMDP during the 60’s and 
70’s. 

The discussion will illustrate the use of a number of 
important statistical computing tools including Beaton 
sweeps, dummy variables, the FFT, problem definition, 
lattice driven balanced mixed model computation, and 
unbalanced incomplete mixed model analysis. 

Only a limited number of BMDP programs are         
discussed. The choice was made to illustrate tools and 
is rather arbitrary. In the interest of some historical 
accuracy the programs are those best known to the 
author.

1. The first manual

A natural place to begin is with the BIMD manual 
complied by Lynn Hayward  in 1961. BIMD stands for 
``biomedical’’ and the Biomedical Data Processing 
Group at UCLA. The manual documented a collection 
of 35 programs produced in just two years by students 
and staff in the Division of Biostatistics at UCLA     
under the direction of Wilfrid Dixon, Frank Massey, 
and Jean Dunn. In most cases the programs were     
created for specific medical research projects. 

There were 8 regression programs, 6 multivariate 
analysis programs, 6 analysis of variance programs, 9 
tabulating, screening, and plotting programs, and 6 
miscellaneous programs.

While primitive by today’s standards these programs 
covered a broad spectrum of analyses including       
multiple and stepwise regression, factor analysis,       
discriminant analysis, balanced and to some extent   
unbalanced analysis of variance and covariance, and 
cross tabulation. 

The BIMD programs later became the BMD programs 
and eventually the BMDP programs. BMD was simply 
an alternate spelling of BIMD. The letter P in BMDP 
stood for the parameter language which represented a 
major advance that greatly simplified program use and 
output readability. Here these programs will be         
referred to generically as the BMDP programs. Until 
the mid 70’s, when generous federal support ended, the 
BMDP programs were free.

As an historical note the first manual had three      
stepwise regression programs. One used a residual sum 
of squares, one an F-to-enter, and one a partial         
correlation variable selection rule. While asserted to be 
distinct these rules are in fact  equivalent, something 
that might have been discovered empirically if not 
theoretically. 

2. The Beaton sweep operator

The BMDP programs made extensive use of the      
Beaton sweep operator. The Beaton sweep is a matrix 
operator introduced in Albert Beaton’s thesis           
supervised by John Tukey. His thesis became an        
Educational Testing Service Research Bulletin in 1964. 
Jennrich (1977) may be a more useful reference here. 
Today the Beaton sweep is a well known and            
extensively used statistical computing tool. BMDP 
used a minor modification of Beaton’s operator called 
the Gauss-Jordan pivot. This modification had the    
advantage that it was its own inverse making it        
unnecessary to write and use a separate  inversion     
subroutine. In the discussion here the Beaton sweep 
will refer to the modified operator. Actually there is a 
sweep operator for each non zero diagonal element of 
the matrix to which it is applied. The choice is an     
operator parameter. 

The sweep operator was very easy to implement. It 
required just 11 lines of Fortran code.
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To describe the use of the operator consider a         
multivariate regression model of the form

  

and the partitioned matrix

This matrix is called the regression tableau (RT)       
corresponding to the model (1). In it  

€ 

B
∧

     is the matrix 

of least squares estimates of B,  S=(Y-X

€ 

B
∧

 )’(Y-X

€ 

B
∧

 ) is a   
matrix of residual cross  products, and (X’X)-1 is useful 
for computing standard errors and evaluating test sta-
tistics.

Consider the modified regression model obtained by 
moving the i-th column of Y  into X. The new RT is 
obtained by simply  applying the sweep operator       
defined by the i-th diagonal element of S to the       
current RT. 

Moving the i-th column of X into Y is also very easy. 
One simply applies the sweep operator defined by the 
i-th diagonal element of  (X’X)-1  to the current RT.

In stepwise regression when variables are entered or 
removed the current RT is updated using the sweep 
operator. The last diagonal element of S is the residual 
sum of squares for the current stepwise regression 
model. The independent variable entered is the one 
that makes the largest reduction in this element and 
the independent variable removed is the one that 
makes the smallest increase. In either case finding 
these variables is easy because the amount of change is 
a simple function of just two values in the current RT. 
After a variable is selected for entry or removal the RT 
is updated using the sweep operator defined by the   
diagonal element corresponding to the variable to be 
moved.

One argument in support of stepwise regression is that 
by using the sweep operator the cost of a stepwise    
regression is no more than that of  an ordinary         
regression and the incomplete regressions produced 
along the way may lead to interesting insights.

In addition to stepwise regression the sweep operator 
has been used for best subset regression, for stepwise 
discriminant analysis and other stepwise analyses, for 
unbalanced fixed and mixed analyses of variance and 
covariance and other methods using categorical vari-
ables, and for nonlinear regression and other methods 
using coordinate constraints.

3. Problem definition

In 1969 BMDP introduced a parameter control        
language developed by Laszlo Engelman that  greatly 
simplified problem definiton. 

Problem definition parameters were given explicit 
names that could be used to specify their values. 
Moreover, using them made it possible to assign      
default values.   This not only greatly simplified      
problem definition it made the definition and output 
much easier to read. 

Rather than punching (yes, punching) a numeric      
parameter value in specified columns of control cards, 
one for each parameter with no defaults, using the    
parameter control language one could punch 

INPUT      VARIABLES = 3.
           FORMAT = '(F2.0,2F3.0)'.
/VARIABLE NAMES = FOOD , WEIGHT , 
GAIN.
           GROUPING = FOOD.
/DESIGN    DEPENDENT = GAIN.
/END.                                          
{Data here}

to specify a simple one way analysis of covariance. 

Before the introduction of the parameter language the 
definition for the same problem was
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PROBLM__0400038010300003{29-68blank}0001
SAMSIZ010010010008
(F2.0,2F3.0)
{Data here}
CVRSEL020102

which is clearly much more difficult to read and much 
more difficult to punch because all of the numbers and 
letters had to appear and appear in specified columns. 
This required the explicit specification of 22 parameter 
values rather than 7 when using the parameter control 
language.

The parameter control language also simplified       
variable generation. For example the parameter       
language command 

/TRANSFORM RATIO = WEIGHT/HEIGHT.

replaced the equivalent transgeneration command

__614_____2_____4

where 14 is the division command and 6, 2, and 4 are 
the variable numbers for RATIO, WEIGHT, and 
HEIGHT.

Because programs shared many problem definition  
parameters it became appropriate to view BMDP as a 
statistical software system rather than simply a          
collection of programs. 
 

4.  FFT, the fast Fourier transform

An important contribution to statistical computing 
and to computing in general was the re-discovery by 
Cooley and Tukey (1965) of the FFT. Although          
discovered several times earlier it was Tukey who    
identified the wide applicability and importance of this 
algorithm.

BMDP was the first general statistical software system 
to use the FFT to produce  efficient frequency domain 
time series analysis programs.  The programs estimated 
power and cross spectra, amplitudes, phases, and      
coherences for multiple series. The cross spectra were 

used to estimate multiple coherences and frequency 
response functions for a set of input and output series.

5. Computer generated dummy variables

BMDP made extensive use of computer generated 
dummy variables. The main ideas can be described in 
terms of the two-way analysis of variance (anova) 
model

   

The terms αi, βj, and γijk sum to zero on each of their 
subscripts. 

Let nij be the number of levels of k in the cell defined 
by i and j. The fitting is greatly simplified if all of the   
nij are equal. Such models are called balanced. In the 
unbalanced case linear regression was used for fitting. 
The linear regression model corresponding to (2) had 
the form

where Dμ, Dα, Dβ, and D γ are dummy variable          
matrices for the anova components and θμ, θα, θβ  and 
θγ are parameter vectors of appropriate lengths.

The dummy variable matrices were generated as       
follows.  A main effect table was created for each single 
index (main effect)  component of the anova model. If 
the index i had three values the table for the  α i       
component  in (2) was
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€ 

yijk = µ +α i +β j +γ ij +eijk         (2) 

€ 

y = Dµθµ + Dαθα + Dβθβ + Dγθγ + e       (3) 



The columns in the matrix on the lower right sum to 
zero and are a basis for the space of all functions of i 
that sum to zero.

The input data for each subject contained values for 
the anova indices i and j. Dummy variable matrices 
were constructed from these as follows. 

Dummy variable values for a main effect were          
generated by reading from its main effect table. The 
values for the main effect αi for a subject with i=2 are 0 
and -1, the values in the second line of the αi main    
effect table. Dummy variable values for the βj term 
were generated similarly. Dummy variable values for 
the interaction term γij were simply the Kronecker 
product of those for the two main effect terms. The 
dummy variable matrices, one for each term in the 
anova model, were formed one line at a time from the 
index values i and j for each subject. The dummy     
variable matrix Dµ for the intercept term µ was simply 
a column of ones.

Let D=(Dµ,Dα,Dβ,Dγ)  be the dummy variable matrix 
formed by adjoining those for each of the anova com-
ponents. The regression model (3) takes the form  
Y=Dθ +e. Let

    

be the RT for this regression model. The sum of 
squares for testing any component in the anova model 
is the increase in RSS after sweeping on all the         
diagonal elements of (D’D)-1 corresponding to the 
component.

In general there could be more than two main effects 
and one interaction. The anova model  need not be a 
full factorial, interactions and for that matter any 
terms in the model could be dropped. Analysis of     
covariance models  were handled by simply adjoining a 
matrix X of covariate values to the anova dummy vari-
able matrix D.

Before the introduction of computer generated 
dummy variables users were required to create these by 
hand and enter them as part of an expanded input data 
set.
Few had the knowledge or anywhere near the patience 
required to do this even if they were paid assistants or 
graduate students. Computer generated dummy      
variable matrices greatly simplified the use of           
unbalanced analysis of variance and covariance  mod-
els. 

5. Lattices and balanced mixed model analysis of 
variance

When BMDP began writing analysis of variance pro-
grams for mixed models the literature contained many 
examples, but little in the way of general methods that 
could be applied to a wide variety of models. A notable 
exception was the work of Cornfield and Tukey (1956) 
that expressed expected mean squares for very general 
balanced mixed models as weighted sums of the       
variance components defined by the models. 

In their very general balanced mixed model program 
P8V, BMDP used models defined by lattices and     
computing schemes based on lattices. More specifically 
models were defined by a sequence of subscript sets. 
For example a repeated measures model with groups g, 
treatments t, subjects s, and data ygts can be defined by 
the sequence g, t, sg of subscript sets. The last subscript 
set is often written s(g) and read as subjects nested 
within groups, but the parentheses are not needed.    
Using set union and intersection the first step was to 
form the lattice generated by the specified subscript 
sets. For the repeated measures example the lattice is 
as displayed below

                                                                                VOLUME 18, NO 1,  JUNE 2007

	

 PAGE 20



where φ  is the empty subset. Each node in the lattice 
corresponds to a term in the anova model defined by 
the lattice. To compute a sum of squares (SS) for each 
term in the anova model, P8V began by computing a 
marginal SS, Mn for each node n in the lattice. For the 
gt term in the repeated measures model this would be

  
where  ls  is the number of levels of the index  s and 

   
Mode l sums o f squares Sn, one for each node 
n in the lattice, were computed recursively using

where the sum is over all nodes m in the lattice that are 
proper subsets of n. The nodes n must be processed in 
order of node size. Nodes with equal sizes may be 
processed in any order. This produces a model SS for 
each term in the anova model.

Degrees of freedom (df) for each term in the anova 
model were computed in a similar manner. Each node 
n was assigned the df of its marginal sum of squares 
Mn. For the gt node in the repeated measures model 
this is lg lt. Degrees of freedom for each term in the 
anova model were obtained from their marginal df   
using the same lattice driven subtraction process used 
to obtain model SS from marginal SS. Actually the 
model SS and df were computed simultaneously by  
applying the lattice subtraction process to marginal 
(SS,df) pairs. 

An analysis of variance table was produced by giving a 
df, mean square MS=SS/df, and expected mean square 
EMS for each term in the anova model. The EMS were 
produced using the methods of Cornfield and Tukey. 
Finally F statistics were produced, where possible, by 

matching EMS. Many different anova models can be 
defined by specifying an appropriate and usually very 
brief collection of subscript sets.

6.  General mixed model analysis of variance and 
covariance

In 1977 BMDP introduced a mixed model analysis of 
variance and covariance program that did not require 
balance or completeness. This program P3V was a    
precursor to SAS (MIXED), SPSS (MIXED), and Stata 
(xtmixed) all of which      appeared much later. An   
example of a mixed model is

Except for the xijk the subscripted Roman letters on 
the right side are uncorrelated random variables with 
mean zero and for those sharing the same Roman    
letter, common variance. For example the       

 
for all i and j. The Greek terms in the model are called 
fixed effects and the random terms random effects.

In P3V this model is defined by a DESIGN paragraph 
with the sentences 

                FIX = I.
       RAND = J.
       RAND = I,J.
       COV = X.

Using a variety of FIX and RAND specifications a 
wide variety of mixed models could be specified. These 
included random coefficients factorial models, nested 
models, and repeated measures models. 

Because the models were not required to be complete 
or balanced computer generated dummy variables were 
used to reformulate them as a fixed and random        
coefficients model. These had the form
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€ 

Mgt = ls ygt
2
.

t
∑

g
∑  

€ 

ygt
2

= ygts
s
∑ / ls.

€ 

Sn = Mn − Sm
m⊂n
∑  

€ 

yijk = µ +α i + bj + cij + βxijk + eijk  

€ 

Var cij( ) =σ c
2  

€ 

y = Xα +U1b1 + ........+Ucbc + e  



where b1………. bc are uncorrelated random vectors with 
covariance matrices 

€ 

σ1
2I1,.........,σ c

2Ic  .  In the example 
the second random component cij  became U2b2. 

Two methods of estimation were used, maximum     
likelihood (ML) and restricted maximum likelihood 
(REML). Also two algorithms were used, Fisher      
scoring (FS) and Newton-Raphson (NR). For the ML 
and FS pair the algorithm had the form

where θ is a vector containing the mean and variance 
parameters, I(θ) is the information matrix for the ML 
model,and s(θ) is the score vector. Partial    sweeping 

was used to keep the variance components 

€ 

σ i
2 ≥ 0  . All 

tests were likelihood ratio tests. Computing formulas 
and the partial sweeping strategy are discussed by 
Jennrich and Sampson (1976, 1968).

Unfortunately P3V had a number of weaknesses. 
Rather than being automatic, all tests of significance 
for the terms in the model had to be explicitly         
requested. Moreover, the output was much too ver-
bose. BMDP didn’t seem to appreciate the importance 
of this program. Rather than making easy fixes for its 
shortcomings, they encouraged the use of their much 
less general P2V program.

7.  People

Many contributed to the development of the BMDP 
programs. It is difficult to name all who made            
significant contributions. Some who played a major 
role in the early development of BMDP include:
 
 Wilfrid J. Dixon who supervised the development 
of the BMDP system and served as editor or co-editor 
of all BMDP manuals after the first. His NIH grants 
were the source of financial support. 

 Robert I. Jennrich who developed algorithms for 
regression, analysis of variance, factor analysis,       
stepwise discriminant analysis, and time series analysis 

as part of his half time appointment in the Depart-
ment of Bio-mathematics at UCLA from 1962-79.

 Morton B. Brown who developed the frequency 
table programs including a log-linear model program 
and methods for dealing with structural zeros. He also 
reorganized the BMDP manuals and co-edited two of 
them.

 Laszlo Engelman who created the parameter       
language, developed many of the programs, and       
supervised the other programmers.

 Paul F. Sampson who from the beginning was 
BMDP’s secret weapon used to write many of their 
programs.

MaryAnn H. Hill who produced most of program 
write-ups. 

Two who during extended visits made significant con-
tributions were
 Richard L. Anderson who helped develop the 
mixed model analysis of variance programs and John 
A. Hartigan who developed the block and k-means 
cluster analysis programs. 

 8.  SPSS and SAS

Two additional statistical software systems SPSS and 
SAS were introduced in the late 60’s and early 70’s. 
They were similar to BMDP and undoubtedly        
benefitted from the BMDP development during the 
previous decade. SPSS and SAS became increasingly 
popular in part due to there becoming commercial   
enterprises early on. Their usage probably surpassed 
that of BMDP by the beginning of the 80’s.

BMDP was supported primarily by NIH grants until 
1980 when it too became a commercial, but less       
successful, enterprise. In 1995 it was sold to SPSS and 
slowly dropped out of sight. The BMDP software, 
however, can still be obtained from Statistical Solu-
tions Ltd., http://www.statsol.ie.   
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Δθ = I θ( )−1s θ( )  

http://www.statsol.ie
http://www.statsol.ie
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                              56th Session of the ISI
                 INTERNATIONAL STATISTICAL INSTITUTE
                       22 - 29 AUG, Lisboa 2007

                   http://www.isi2007.com.pt/

The Graphics 
program at JSM
JEFF SOLKA (for Simon Urbanek)

The Statistical Graphics Section has two invited 
session during JSM2007. These are l isted in 
chronological order below.

•Mon, 7/30 8:30 AM to 10:20 AM, Exploring 
Models Interactively 
•Tue,  7/31 2:00 PM to 3:50 PM, Scagnostics, We 
also have two topic contributed session and a topic 
contributed panel.
•Mon, 7/30 10:30 AM to 12:20 PM, Applications of 
Visualization for Web 2.0 
•Tue, 7/31 8:30 AM to 10:20 AM, Statistical 
Graphics for Everyday Use?, Topic Contributed 
Panel
•Wed, 8/1 2:00 PM to 3:50 PM, Statistical Graphics 
for Analysis of Drug Safety and Efficacy                                      

We have a regular contributed session.

•Thu, 8/2 10:30 AM to 12:20 PM, Statistical 
Graphics - Methods and Applications   

We have several interesting roundtable luncheons/
coffees.

•7/30 12:30 PM to 1:50 PM, Graphical Data Mining     
of Network Data, Luncheon
•Tue, 7 /31 7 :00 AM to 8 :15 AM, Network 
Visualization, Coffee
•Wed, 8/1 7:00 AM to 8:15 AM, Introducing 
Multivariate Statistics through Graphics and 
Geometry, Coffee
•Wed, 8/1 12:30 PM to 1:50 PM, Visualizing Model 
and Parameter Uncertainty, Luncheon

We also have a continuing education course.

•Sat, 7/28 8:30 AM to 5:00 PM, Graphics of 
LargeDatasets 

Stat Graphics also co-sponsors 19 other sessions 
including the invited session 
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•Dimens ion Reduct ion and Informat ion    
Visualization, Thu, 8/2 10:30 AM to 12:20 PM. 

In this session the third talk seems highly relevant 
to the interests of our section. It is scheduled for 11:35 
AM and is entitled 

“Matrix Visualization for High-dimensional 
Categorical Data Structure with a Cartography 
Link .” 

So a careful perusal of the online JSM2007 
program is in order. I am sure that there are numerous 
other graphical nuggets to be found within the 
program. See you all in Salt Lake City

The Computing  
program at JSM

The Circle Game
by John Monahan

Whenever I have to speak about the past in some 
way that may reveal my age, I have a well-reheared 
gesture to rub my mouth with my hand, mumbling so 
that the only words discernable are ‘...years ago,’ 
leaving the listener to speculate about what was 
mumbled.  I recently had the need to look at an old 
issue of the Proceedings of the Statistical Computing 
Section (when the ASA sections published their own). 

Since that same mumbling gesture won’t work in print, 
the year was 1975, the first year I had gone to JSM as a 
wet-behind-the-ears graduate student.  Contrary to 
speculation, the language was not Latin, but the names 
of some of the computer languages that were discussed 
make it seem as ancient.  

The topics included in that issue reflect the worries of 
that time, and, because of the nature of research, also 

the dreams.  Among those topics were: arithmetic, 
testing, debugging, and comparing software,              
algorithms for Monte Carlo, trying to get different 
software to talk to each other.  Following some success 
in the progression of regression software, one dream of 
that era was to develop software to automatically do 
variable selection in regression.  “Dreams have lost 
their grandeur coming true....”  And now as we look at 
the invited sessions sponsored by the Statistical    
Computing Section for the coming JSM in Salt Lake 
City, we see the development of the descendants of 
those dreams.  There are three invited sessions on    
statistical machine learning: one with the ‘New Devel-
opments,’ clearly to distinguish from the ‘Old,’ a     
second session on ‘Robust’ and a third on ‘Recent      
Advances.’  “There will be new dreams, maybe better 
dreams...”  Thirty years ago, thousands of observations 
were enough to constitute a large data problem.  Today, 
as seen in the ‘Harnessing Data Streams’ continuing 
education course, the statistical analysis cannot wait 
for all of the data, as mundane concepts such as ‘sam-
ple size’ become obsolete.  Back then,  most statistical 
techniques that relied on combinatorial computations 
were often limited in their application to toy problems 
with sample sizes in single digits.  But in Tim            
Hesterberg’s continuing education course at JSM, 
permutation tests and bootstrap methods are now able 
to take their places as standard statistical methodology.

One would expect that the most recent dreams should 
come from researchers least unencumbered by the 
past.  For those, the session for the winning            
submissions in the Statistical Computing and Statisti-
cal Graphics Student Paper Competition should be a 
good place to look.

______________________________________ 
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News    
ANNUAL COMPETITIONS 
2007 WINNERS 
JR Locklwood,  
Awards Officer,  2007
Statistical Computing Section          
                                              
The Statistical Computing Section of ASA sponsors 
three annual competitions aimed at promoting the 
development and dissemination of novel statistical 
computing methods and tools: the Student Paper 
competition (jointly with the Statistics Graphics 
Section), the John M. Chambers Award, and the Best 
Contributed Paper competition. Winners of all three 
awards are selected prior to the Joint Statistical 
Meetings (JSM), being officially announced at the 
Monday night business meeting of the Statistical 
Computing and Statistical Graphics Sections at JSM.

The Student Paper competition is open to all who are 
registered as a student (undergraduate or graduate) on 
or after September 1st of the previous year when the 
results are announced. Details on submission 
requirements are provided in the competition’s 
announcement, which went out in September and is 
available at the Statistical Computing website at http://
www.statcomputing.org. 

The four winners of the Student Paper competition are 
selected by a panel of judges formed by the Council of 
Sections Representatives (COS- REPs) of the 
Statistical Computing and Statistical Graphics 
Sections, who work hard to get the results announced 
by the last week of January. As part of the award, the 
winners receive a plaque, have their JSM registration 
covered by the sponsoring sections and are reimbursed 
up to US $1,000 for their travel and housing expenses 
to attend the meetings. The winning papers are 
presented at a special Topics Contributed session at 
JSM, which typically takes place on Tuesday, but this 
year is taking place on Sunday. The winners of the 2007 
Student Paper competition, presented in alphabetical 
order, were:

•Andrew Finley (advisors Sudipto Banerjee and Alan R. 
Ek), “spBayes: An R Package for Univariate and 

Multivariate Hierarchical Point-referenced Spatial 
Models”

•Alexander Pearson (advisor Derick R. Peterson),  “A 
Flexible Model Selection Algorithm for the Cox Model 
with High-Dimensional Data”

•Sijian Wang (advisor Ji Zhu),  “Improved Centroids 
Estimation for the Nearest Shrunken Centroid Classifier”

•Hadley Wickham (advisors Di Cook and Heike 
Hofmann), “Exploratory Model Analysis”

The John M. Chambers Award is endowed by Dr. 
Chambers generous donation of the prestigious 
Software System Award of the Association for 
Computing Machinery presented to him in 1998 for 
the design and development of the S language. The 
competition is open to small teams of developers 
(which must include at least one student or recent 
graduate) that have designed and implemented a piece 
of statistical software, with the winner being selected 
by a panel of three judges, indicated by the section’s 
awards officer.  Further details on the requirements for 
submission and eligibility criteria are provided in the 
competition’s announcement, which is distributed in 
early October, and at the Statistics Computing website 
(see above). The prize includes a plaque, a cash award 
of US $1,000, plus a US $1,000 allowance for travel 
and hotel expenses to attend JSM (with registration fee 
covered by the section.) The winner of the 2007 John 
M Chambers Award was:

Heather Turner and David Firth (University of 
Warwick Department of Statistics)  for “gnm”,  an R 
package for fitting generalized nonlinear models

Final ly, the Best Contributed Paper award is 
determined on the basis of the evaluations filled out by 
the attendees and session chairs of the Contributed 
and Topics Contributed sessions of JSM which have 
the Statistical Computing Section as first sponsor. All 
presenters in those sessions are automatically entered 
in the competition.  The prize includes a US $100 cash 
award and a plaque. The winner of the Best 
Contributed Paper Award from JSM 2006 was: Adam 
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Petrie and Thomas R. Wil lemain (Rensselaer 
Polytechnic Institute), “Spanning Trees as Data 
Analysis Tools”

I want to thank the judges of both the Student Paper 
Competition and the John M. Chambers Award for 
their dedication and efforts to see that the 
competitions were run fairly and on time.  I also want 
to extend special thanks to Jose Pinheiro, who 
patiently answered many procedural questions as I 
waded through my first year as Awards Chair. 
Congratulations to all of this year’s winners and I look 
forward to next year’s competitions.

Another pop quiz
Guess who the people behind these images taken 

from the 2006 JSM Statistical computing and 
Graphics program in Seattle are. Send your guesses to 
the editors. The winners will be announced at the Stats 
Computing and Graphics Mixer at JSM 2008.  Photos 
courtesy of the ASA. 
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Statistical Computing 
Section Officers 2006
John F. Monahan, Chair
monahan@stat.ncsu.edu 
(919)515-1917
Deborah A. Nolan, Chair-Elect
nolan@stat.berkeley.edu
(510) 643-7097
Stephan R. Sain, Past Chair
ssain@math.cudenver.edu
(303)556-8463
Ed Wegman, Program Chair
 ewegman@gmu.edu
 (703)993-1691
Wolfang S. Jank, Program Chair
 wjank@rhsmith.umd.edu
 (301) 405-1118
David J. Poole, Secretary/Treasurer
poole@research.att.com 
(973)360-7337
Vincent Carey, COS Rep. 05-07
 stvjc@channing.harvard.edu
 (617) 525-2265
Juana Sanchez, COS Rep. 06-08
 and  Newsletter Editor
jsanchez@stat.ucla.edu 
(310)825-1318
Thomas F. Devlin, Electronic 
   Communication Liaison 
devlin@mozart.montclair.edu 	


(973) 655-7244                                      
J.R. Lockwood, Awards Officer             
lockwood@rand.org
412-683-2300-Ext 4941
R. Todd Ogden, Publications Offi-
cer 
ogden@cpmc.columbia.edu
212-543-6715
John J. Miller, Continuing 
  Education Liaison 
jmiller@gmu.edu 
(703) 993-1690

  

Statistical Graphics 
Section Officers 2007
Jeffrey L. Solka, Chair
jeffrey.solka@navy.mil
(540) 653-1982
Daniel J. Rope, Chair-Elect
drope@spss.com
(703) 740-2462
Paul J. Murrell, Past Chair  
p.murrell@auckland.uc.nz
64 9 3737599
Simon Urbanek, Program Chair
urbanek@research.att.com
(973)360-7056
Daniel R. Hunter , Program 
  Chair-Elect
dhunter@stat.psu.edu
(814) 863-0979
John Castelloe, Secretary-
Treasurer
John.Castelloe@sas.com 
(919) 677-8000
Daniel B. Carr, COS Rep 05-07
dcarr@gmu.edu 
(703) 993-1671
Edward  J. Wegman, COS Rep 05-
07
ewegman@galaxy.gmu.edu 
(703) 993-1680
Linda W. Pickel, COS Rep 07-09
 lpickle@statnetconsulting.com
(301) 402-9344
Andreas Krause, Newsletter Edi-
tor
akrause@Pharsight.com

Brooks Friedly, Publications      
Officer
 fridley.brooke@mayo.edu
(507) 538-3646
Monica D. Clark, ASA Staff Liai-
son
monica@amstat.org
(703) 684-1221 

 T

The  Statistical Computing & Statis-
tical Graphics Newsletter is a publi-
cation of the  Statistical Computing 
and Statistical Graphics Sections of 
the ASA.  Until a new Co-editor for 
the Statistical Graphics Section 
comes in to replace Di Cook, all 
communications regarding the publi-
cation should be addressed to: 

                                                      
Juana Sanchez, Editor Statistical 
Computing Section.                
Department of Statistics       
University of California,          
8125 MS Building,  Los Angeles,  
CA90095 (310) 825-1218  
jsanchez@stat.ucla.edu 
www.stat.ucla.edu/~jsanchez 

Andreas Krause, Editor          
Statistical Graphics Section                           
akrause@Pharsight.com   
http://www.elmo.ch 

All communications regarding ASA 
membership and the Statistical 
Computing and Statistical Graphics 
Section, including change of address, 
should be sent to American Statisti-
cal Association, 1429 Duke Street  
Alexandria, VA 22314-3402 USA 
(703)684-1221, fax (703)684-2036 
asainfo@amstat.org 
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