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Statistical Computing, as we in this section all
know, is the center of Statistics. The program
for the upcoming JSM 2011 in Miami Beach
indicates that centrality. The Section on Statistical
Computing is the main sponsor of 27 technical
sessions and activities, and cosponsor of 50 more
for a total of 77. The session and paper titles cover
the entire gamut of statistical activity and many
scientific and social issues. The cosponsors include
most of the sections of ASA and many of the asso-

Continued on page 2 . . .

Is there a fifth force in particle physics, in
addition to the previously known four interactive
forces electromagnetism, strong nuclear force,
weak nuclear force, and gravitation? A possible
new force, called “technicolor” force, was recently
described in an article by three physicists (http://
prl.aps.org/abstract/PRL/v106/i25/e251803),
based on unexpected experimental observations
(http://prl.aps.org/abstract/PRL/v106/i17/
e171801). The discovery of such a new force would
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Computing Chair
Continued from page 1.

ciated societies. Topics include: career
development, climate, clinical trials, data mining,
environment, financial analysis, functional data
analysis, genetics, graphics, health policy,
high-dimensional methods, mapping, marketing,
Monte Carlo simulation, national security, physical
and engineering sciences, public affairs, quality
and productivity, risk, social media, teaching.
There is something for everyone in the collection.

The Program Chair for the Section this year
is David J. Poole. With the help of all of you
who are presenting he has done a magnificent
job. Just the Invited Paper Session Topics are
fascinating: Advancement in Hierarchical Models,
The Future of Statistical Computing Environments,
Computational Methods for Space-Time Correlated
Data, Statistics in Computational Advertising
(what goes on behind the scenes when a search
engine decides which advertisements to display
to a specific search item), Statistical Analysis
of Actigraphy Data (Actigraphy is a relatively
non-invasive method of monitoring human
rest/activity cycles.).

In addition to invited papers at the JSM, the
Section cosponsors the Data Expo (this year with
posters related to the 2010 Deepwater Horizon
Oil Spill), the Interface on Computer Science
and Statistics, student awards, and Continuing
Education courses at the JSM. This year we have
two courses: “Data Stream Mining: Tools and
Applications” by Simon Urbanek and “Bootstrap
Methods and Permutation Tests for Doing and
Teaching Statistics” by Tim Hesterberg.

The centrality of Statistical Computing, and
computing in general, in our world implies
responsibility. Part of our mission is to get
everyone who does data analysis to do it
well. We therefore must work toward getting
high quality statistical computing and graphics
systems accessible to everyone on any computer
(cell phones included) and at every level from
introductory courses to highly complex large and
very large applications. Many of the sessions in
the upcoming JSM are reflective of the work that
our members have done in making high-quality
software and thinking processes accessible. We
have sessions on software design for teaching, and

statistical teaching using high-quality software.
The main specific social event is the annual

“Section on Statistical Computing and Section
on Statistical Graphics Joint Mixer” on Monday
evening. I hope to see many of you there, as well
as at the rest of the JSM.

Richard M. Heiberger
Temple University

Graphics Chair
Continued from page 1.

be considered a major revolution in the world of
particle physics. But, why does an editorial written
by the current chair of the Statistical Graphics
section start with discoveries from particle physics?
The answer of course is simple: Because of the
statistical graphics that supported this discovery.

A less technical summary of these findings
and a freely accessible version of the most
relevant figure can be found here and here at
the NewScientist. Of course, according to our
standards, this is a relatively simple statistical
figure. Nevertheless, this may be the most
important piece of a puzzle that transforms many
years of scientific research into a new physical
theory and model.

It appears as if statistical graphics have helped
to detect the unknown and unexpected — again!
Most of us know the classical examples from
the last 150 years where statistical graphics have
helped to discover the previously unknown.
This includes John Snow’s discovery that the
1854 cholera epidemic in London most likely
was caused by a single water pump on Broad
Street, a fact he observed after he had displayed
the deaths arising from cholera on a map of
London. A second, well–known example is
Florence Nightingale’s polar area charts from
1857, the so–called Nightingale’s Rose (sometimes
incorrectly called coxcombs), that demonstrated
that the number of deaths from preventable
diseases by far exceeded the number of deaths
from wounds during the Crimean War. These
figures convinced Queen Victoria to improve
sanitary conditions in military hospitals. Many
additional important scientific discoveries based on
the proper visualization of statistical data could be
mentioned, but the most important fact is: New
discoveries based on the visualization of data can

2

http://www.newscientist.com/article/dn20357-mystery-signal-at-fermilab-hints-at-technicolour-force.html
http://www.newscientist.com/articleimages/dn20357/1-mystery-signal-at-fermilab-hints-at-technicolour-force.html


happen here and now!
This is a message we should carry to our

collaborators, students, supervisors, etc.: Statistical
graphics (or visual data mining, visual analytics, or
any other name you like) typically do not provide a
final answer. But, statistical graphics often help to
detect the unexpected, formulate new hypotheses,
or develop new models. Later on, additional
experiments or ongoing data collection as well as
more formal methods (and p–values if you really
want) may be used to verify some of the original
graphical findings.

As can be seen in the examples above, statistical
graphics are of universal use. Nevertheless,
graphics may also be unique for some particular
application areas. This naturally leads me to invite
you to the Joint Statistical Meetings (JSM) where
new graphical methods and their applications are
presented. I do not want to repeat the entire
JSM graphics program here, but rather say that
Webster West, our 2011 Program Chair, has put
together an excellent set of sessions for the 2011
JSM held from July 30 to August 4, 2011, in Miami
Beach, Florida, at the Miami Beach Convention
Center. So, let me just mention a few highlights
here: First, there is the 2011 Data Expo (Mon,
8/1/2011, 2:00pm to 3:50pm) with posters related
to the 2010 Deepwater Horizon Oil Spill. Next,
there is the Section on Statistical Computing and
Section on Statistical Graphics Joint Mixer (Mon,
8/1/2011, 7:30pm to 10:00pm) that only is credited
to Statistical Computing in the online program and
may be missed at first glance. For everything
else (from invited sessions over topic contributed
sessions to contributed sessions and roundtables),
start at http://www.amstat.org/meetings/jsm/

2011/onlineprogram/index.cfm and search for
details. Enjoy the JSM and/or the beaches!

This may sound strange to many of you, but
plans for the JSM 2012 to be held from July
28 to August 2, 2012, in San Diego, California,
at the San Diego Convention Center, have far

progressed. If you have any suggestions for an
invited session for 2012, please contact our 2011
Program Chair–Elect (and 2012 Program Chair),
Hadley Wickham (hadley@rice.edu), as soon as
possible.

Finally, if you always wanted to know what
your section membership fees are used for, here
is a brief summary provided by John (“Jay”)
Emerson, our section secretary/treasurer: (1) We
have contributed $375 to the 2011 Cavell Brownie
Scholars mentoring program (http://www.
amstat-online.org/2010mentoringprogram/

CavellBrownieScholarsProgram.php). (2) We
have contributed $2,000 to support graduate
students at the Interface 2011 conference. (3) We
contributed $1,750 to support color printing of
the special 2009 Data Expo issue of JCGS. Just a
reminder that the Statistical Graphics section offers
color publishing grants that have only received
very few applications so far. For details on the
application procedure, please refer to http://

stat-graphics.org/graphics/grants.html. (4)
We supported Seth Roberts’ invited presentation
at the JSM 2010 with $450. (5) Other recurring
annual expenses are for food and drinks at the
mixer and the officers’ meeting at the JSM and for
various awards, such as “The Statistical Computing
and Graphics Award” and the “Student Paper
Competition”.

Did you stay with me until the very end? If
so, let me reveal one more fact: Another group of
researchers from particle physics that conducted
the same experiments did not detect any anomalies
in their data and figures (http://www.bbc.co.uk/
news/science-environment-13722986 and http:

//www-d0.fnal.gov/Run2Physics/WWW/results/

final/HIGGS/H11B/). Currently, researchers from
both groups are comparing their results to come to
a final joint conclusion.

Jürgen Symanzik
Utah State University
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Statistical Graphics and InfoVis —
Twins separated at Birth?
Nicholas Lewin-Koh and Martin Theus, Eds.

This volume features two articles both looking at
the aspects of “graphical displays of quantitative
data”. In the first paper “Visualization: It’s More
than Pictures!” by Robert Kosara, Robert sheds
a light from the point of view of an InfoVis per-
son, i.e. someone who primarily learned how to
design tools and techniques for data visualization.
With the second article “Visualization, Graphics,
and Statistics” by Andrew Gelman and Antony Un-

win, we get a similar view, but now from someone
whose primary training is in math and/or statistics.

Given this set-up, we might think that we have
a good idea how both sides would argue, and what
would be the assets the one and the other side
would claim: computer scientists are good at de-
signing tools for data visualization and statisticians
are good at doing the analysis; and consequently,
they both don’t know much about the expertise of
the other discipline.

Analysts
(statisticians,

domain experts)

technology 
centric,

non-inter-
active

problem
oriented,
interactive

?    interaction    ?

Tool builder
(computer
 scientists)

Figure 1: Is there a “wall” between the two promotors of graphical displays?
(Taken from http://www.theusrus.de/blog/the-wall-what-wall/.)

Reading the two papers you will find out that,
while there is certainly some truth behind this sim-
ple classification, the overlap and agreement is
larger than one would probably think. The com-
mon and most important understanding is that
there is a story to be told with the data. Graph-
ics are the most powerful tool to do this, no matter
what your training and background is.

Nonetheless, there is still a lot to be learned
from each other and the one or the other differ-
ence or misunderstanding might spur the discus-
sion between the two sides. As a platform for this
discussion you can use the post at http://www.

theusrus.de/blog/InfoVis-and-StatGraphics/

— we are looking forward to a lively exchange,
which might even end up in a collaboration!
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Visualization: It’s More than Pictures!
Robert Kosara

Introduction

Information visualization is a field that has had
trouble defining its boundaries, and that conse-
quently is often misunderstood. It doesn’t help that
InfoVis, as it is also known, produces pretty pic-
tures that people like to look at and link to or send
around. But InfoVis is more than pretty pictures,
and it is more than statistical graphics.

The key to understanding InfoVis is to ignore
the images for a moment and focus on the part that
is often lost: interaction. When we use visualiza-
tion tools, we don’t just create one image or one
kind of visualization. In fact, most people would
argue that there is not just one perfect visualiza-
tion configuration that will answer a question [4].
The process of examining data requires trying out
different visualization techniques, settings, filters,
etc., and using interaction to probe the data: filter-
ing, brushing, etc.

The term visual analytics captures this process
quite well, and it also gives a better idea of what
most visualization is used for: analysis. Analysis is
not a static thing, and can rarely be done by looking
at a static image. Visualization and visual analytics
use images, but the images are only one part of vi-
sualization.

Cheap Thrills

It is no wonder that many people think that vi-
sualization is primarily about pretty and colorful
pictures, even smart people like Andrew Gelman.
What readers see on popular websites like Flow-
ingData [8] and infosthetics [3], and what makes
them so popular, are the pictures. In many cases,
they provide only minimal context, and readers are
mostly left to look at the images as images, rather
than figure out what they are actually trying to tell
them.

Another issue is the blurred boundary between
actual visualization and data art, which is often ig-
nored on purpose to have more interesting images
to choose from. The result is that the expectation
many people have of visualization images is sim-
ilar to that of a piece of art: that you can look at

it and like or don’t like it, but don’t get any actual
information out of it. In fact, I have argued that
what Gelman calls “that puzzling feeling” is actu-
ally what sets pragmatic visualization apart from
data art [2].

Data art clearly has its place, and the more prag-
matic visualization community can learn from it.
But when we’re talking about visualization in the
context of statistics and the analysis of data, we
need to draw a clear distinction. Visualization is
not art any more than statistics is.

Goals

So what does visualization do, then? The main idea
is to provide insight into data. This is how scien-
tific visualization got started in the 1980s: the huge
amounts of data produced by the then-recent su-
percomputers required new ways of analysis. Sci-
entific visualization made it possible to see the ef-
fects of design changes on the pressure distribution
of an airplane wing, for example. The same thing
could be done with number crunching in theory,
but it was a lot more immediate and obvious where
things went wrong when the model was actually
shown as an image.

Another, more recent, goal is making data acces-
sible. A lot of data is already available in principle,
but not in a form that normal people would want
to play with. There is still a difference between
data being technically available and actually being
accessible to a broad audience. Creating a visual-
ization makes it possible for people to start poking
around in the data and perhaps discover interest-
ing facts that nobody has seen before.

Finally, to borrow Tableau’s tagline [6], the goal
of visualization is to make analytics fast. Sure, a lot
of questions can be asked of a data warehouse by
writing 150-line SQL queries, but changing param-
eters or exploring variations is going to be diffi-
cult this way. An interactive visualization system
makes it possible to do that and ask many more
questions in much less time. This is not only a
worthwhile goal in a business context, but also in
the sciences and many other fields: the easier and
quicker it is to ask questions, the more questions
can be asked.
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Figure 1: Spirals are useful for finding periodicity in data (from [1]). (a) The bar chart shows no obvious
periodic pattern; (b) the spiral set to 25 days hints at a periodic pattern, but this is clearly not the correct
time frame; (c) at 28 days, the pattern is very clearly visible.

Example: Perceive Patterns

A common question in time series data is whether
the data is periodic, and if yes, what the period is.
A common way of finding out is drawing the data
on a spiral [1]. By changing the number of data
points that is shown per full round the spiral makes
(that number is constant, of course), patterns be-
come visible. Figure 1 shows an example of sick
leave data that has an interesting periodic pattern:
in 28 days, there are four periods, which means that
there is a weekly pattern: more people call in sick
on Mondays than later in the week.

The way this pattern was discovered is decep-
tively simple. All it took was to play with a slider
that allowed the user to change the number of days
on shown on the spiral. Slide it back and forth, and
soon you will see a pattern (if there is one). With a
bit of practice, you can even tell when you’re get-
ting close, as there are telltale signs around the op-
timal value.

The key here is not just the way of displaying
the data, but also the interaction. Without it, it
would take much longer to find the correct inter-
val, or require some very educated guessing. The
power of visualization is that it allows the user to
find things he or she may not have expected, and
thus would not have been looking for.

Example: Filter the Flood

A beautiful example of the integration of analysis
and visualization is a system for visualizing net-
work traffic data [7]. To be able to deal with the
enormous amount of data, the system includes a
declarative logic system that can apply rules to find
certain patterns in the data. The idea is to identify
patterns of known good data, and filter that data
out, so that what remains is the data that needs to
be examined more closely (Figure 2).

Instead of having to write the declarations by
hand, however, the system allows the user to select
data points and creates a rule from the selection.
The user can then apply that rule to other traffic to
see if it matches the right data, and even examine
and edit the actual definition directly. Creating and
refining definitions of different traffic patterns is
relatively straight-forward this way, especially for
a network security expert.

One of the most clever design decisions in this
system is to focus on the known good traffic, rather
than trying to define what is suspicious. New types
of scans and attacks are developed all the time,
so keeping up with them is practically impossible.
Also, defining the bad traffic would defeat a big ad-
vantage of the visual part of this system: being able
to see new patterns as they emerge.

By treating the known good traffic as irrelevant,
it can be removed, and the user can focus on the
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(a)

(b) (c)

(d) (e)

Figure 2: Event diagrams showing flows during residual analysis (from [7]). (a) Original unidentified traf-
fic (b) Flows with “mail” label (c) The residual after filtering out “mail” from Figure 6a. (d) Flows with the
“scan” label (e) The residual after filtering out the “scan” label from Figure 6(c).
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parts that may be suspicious. Each part is done by
the component that is best suited for it. The ma-
chine uses the rules to sift through and filter large
amounts of data, and the user tries to understand
what remains and tweaks the rules (or finds a way
to fend off a break-in attempt).

Conclusions

Visualization cannot exist without visual represen-
tations, and those representations need to be de-
signed so that they can be effectively and efficiently
perceived. There is no question that more effective
visual representations will result in better analysis
and easier comprehension of data. But the images
aren’t everything.

There is also a vast open field of research that
makes good use of statistics to enhance visualiza-
tion. A few attempts at this exist [5], but a lot more
can be done. Despite the relatively new field of
visual analytics, visualization research is still very
strongly focused on visual representation, with too
little attention being paid to interaction, analysis,
and cognitive effects.

And yet, visualization is much, much more than
what it appears to be at first glance. The real power
of visualization goes beyond visual representation
and basic perception. Real visualization means in-
teraction, analysis, and a human in the loop who
gains insight. Real visualization is a dynamic pro-
cess, not a static image. Real visualization does not
puzzle, it informs.
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Visualization, Graphics, and Statistics
Andrew Gelman and Antony Unwin 1

Quantitative graphics, like statistics itself, is a
young and immature field. Methods as funda-
mental as histograms and scatterplots are common
now, but that was not always the case. More re-
cent developments like parallel coordinate plots
are still establishing themselves. Within academic
statistics (and statistically-inclined applied fields
such as economics, sociology, and epidemiology),
graphical methods tend to be seen as diversions
from more “serious” analytical techniques. Statis-
tics journals rarely cover graphical methods, and
Howard Wainer has reported that, even in the Jour-
nal of Computational and Graphical Statistics, 80% of
the articles are about computation, only 20% about
graphics.

Outside of statistics, though, infographics and
data visualization are more important. Graphics
give a sense of the size of big numbers, dramatize
relations between variables, and convey the com-
plexity of data and functional relationships. Jour-
nalists and graphic designers recognize the huge
importance of data in our lives and are always look-
ing out for new modes of display, sometimes to
more efficiently portray masses of information that
their audiences want to see in detail (as with sports
scores, stock prices, and poll reports), sometimes
to help tell a story (as with annotated maps), and
sometimes just for fun: a good data graphic can be
as interesting as a photograph or cartoon.

We and other graphically-minded statisticians
have been thinking a lot recently about the different
perspectives of statisticians and graphic designers
in displaying data. But first we would like to em-
phasize some key places in which we agree with
the infographics community, some reasons why we
and they generally prefer numbers to be graphed
rather than written.

• A well-designed graph can display more in-
formation than a table of the same size, and
more information than numbers embedded
in text. Graphical displays allow and encour-
age direct visual comparisons.

• It has been argued that tables are commonly
read as crude graphs: what you notice in a ta-

ble of numbers are (a) the minus signs, and
thus which values are positive and which are
negative, and (b) the length of each number,
that is, its order of magnitude. In a table
of statistical results you might also note the
boldface type or stars that indicate statistical
significance. A table is a crude form of log-
scale graph. If we really must display num-
bers in tables with many significant figures, it
would probably generally be better to display
them like this: 3.1416, so as not to distract the
readers with those later unimportant digits.

• A graph can tell a story so easily. A line
going up tells one story, a line going down
tells another, and a line that goes up and
then down is yet another possibility. It is
the same with scatterplots and more elabo-
rate displays. Yes, a table of numbers can
tell a story too—especially in an area such as
baseball where, as sabermetrician Bill James
wrote, numbers such as .406 or 61 evoke im-
ages and history—but in general the possibil-
ities of storytelling are greater and more di-
rect with a graph. Storytelling is important
in journalism and advertising (of course) but
also in science, where data can either moti-
vate and illustrate a logical argument or re-
fute it.

In short, graphs are a good way to convey rela-
tionships and also reveal deviations from patterns,
to display the expected and the unexpected.

Now we turn to differences between statisti-
cal graphics and infovis. In statistical graphics we
aim for transparency, to display the data points
(or derived quantities such as parameter estimates
and standard errors) as directly as possible with-
out decoration or embellishment. As indicated by
our remarks above, we tend to think of a graph as
an improved version of a table. The good thing
about this approach is it keeps us close to the data.
The bad thing is that it limits our audience. We
as statisticians think we’re keeping it simple and
clean when we display a grid of scatterplots, but
the general public—and even researchers in many
scientific fields—don’t have practice reading these

1We thank the Institute of Education Sciences for grants R305D090006-09A and ED-GRANTS-032309-005, and the National Science
Foundation for grants SES-1023189 and SES-1023176
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graphs, and can often miss the point or simply tune
out.

In contrast, practitioners of information vi-
sualization use data graphics more generally as
a means of communication, in competition (and
collaboration with) photographs, cartoons, inter-
views, and so forth. For example, a news ar-
ticle about health care costs might include some
reportage (perhaps with some numbers gleaned
from government documents), quotes from ex-
perts, an interview with a sick person who cannot
get health insurance, a photograph of a high-tech
MRI machine, a how-much-do-you-know quiz on
the prices of medical procedures—and a data visu-
alization showing medical costs and service use in
different parts of the country. The visualization is
graded partly on how cool it looks: “cool” grabs

the reader’s attention and draws him or her into
the story.

We hope that, by recognizing our different goals
and perspectives, graphic designers and statisti-
cians can work together. For example, a website
might feature a dramatic visualization that, when
clicked on, reveals an informative static statistical
graphic that, when clicked on, takes the interested
reader to an interactive graphic and a spreadsheet
with data summaries and raw numbers.

We illustrate some of our points with two ex-
amples. The first is Florence Nightingale’s fa-
mous visualization of deaths in the Crimean War.
Here is Nightingale’s graph from 1958 (for more
details, see Hugh Small’s presentation at http:

//www.florence-nightingale-avenging-angel.

co.uk/Coxcomb.htm):

Figure 1: Florence Nightingale’s famous visualization of deaths in the Crimean War is attractive and draws
the viewer in closer so as to understand what is being conveyed.

And now our presentation of the same information using R:
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Figure 2: Our re-plotting of Nightingale’s data shows the data and their patterns much more clearly, but in
a visually less striking way. As is often the case, two smaller plots can show data much more directly than
is possible from a single graph, no matter how clever.

Nightingale’s visualization and ours both have
their strengths. When it comes to displaying the
data and their patterns, we much prefer the plain
statistical graphs. The most salient visual feature
of Nightingale’s graph is that a year is divided into
twelve months, a fact that we already knew ahead
of time. The trends and departures from trend are
much clearer when plotted directly as time series.
This is no criticism of Nightingale: the standard sta-
tistical techniques of today were not so easily avail-
able in the mid-1800s, and in any case her graph
did the job of attracting attention better than ours
do, in any era.

Nightingale’s graph is intriguing and visually
appealing—much more so than our bland graph—
and, as is characteristic of the best infographics,
the appeal is centered on the data display itself. A

reader who sees this graph is invited to stare at it,
puzzle it out, and understand what it is saying. In
some ways, the weaknesses of the graph from a
statistical point of view—it is difficult to read, the
main conclusions to be drawn from the data are
not clear, indeed it is a bit of a challenge to fig-
ure out exactly what the graph is saying at all—
are strengths from the infovis perspective. Given
that the graph is attractive enough, and the subject
important enough, to motivate the reader to go in
deeper, the challenges in reading the graph induce
a larger intellectual investment in the viewer and a
motivation to see the raw data.

And once policymakers were alerted by
Nightingale’s dramatic visualization, they were
able to scan the columns of numbers directly and
understand what was going on: the patterns in
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these time series are clear enough that we imagine
a careful study of a tabular display would suffice.
The role of the graph was to dramatize the prob-
lem and motivate people to go back and look at the
numbers.

In a modern computing environment, a display
such as Nightingale’s could link to a more direct
graphical presentation such as ours, which in turn
could link to a spreadsheet with the data. The sta-
tistical graphic serves as an intermediate step, al-
lowing readers to visualize the patterns in the data.

Our second example concerns the survival rates
of different groups who sailed on the Titanic’s
maiden voyage. Here is a doubledecker plot show-
ing the survival rates by sex (males on the left and
females on the right) and within sex by class (first,
second, third, crew). The widths of the bars are pro-
portional to the numbers in each group, so that we
get a rough idea of their relative sizes, though it is
the survival rates that are of most interest.

It is easy to see two expected conclusions, that
female survival rates were higher than males for
all possible comparisons, and that female survival
rates went down with class. It is also obvious,
though more surprising, that the lowest male sur-
vival rate was in the second class. The fact that the
male crew survival rate was higher than the male
survival rates in the second and third classes must
at least partly be due to the lifeboats being manned

with crew members to accompany the passengers.
All of these conclusions may be drawn directly
from the display, but no one would claim it is an
attention-grabbing graphic! We looked on the in-
ternet (a.k.a. googled) to see if these data had been
presented in an infographic display and found sev-
eral statistical displays, not all either clear cut or
easy to read, though no infographic ones. This is a
good example where cooperation between statisti-
cians and infographics experts could really pay off:
we have an interesting dataset and several interest-
ing conclusions to present and we would like to do
it in an attractive and stimulating way without los-
ing any statistical clarity. Just wanting to do that is
not enough, we need design expertise, and we look
forward to someone from the infographics side tak-
ing up the challenge of helping us.

Andrew Gelman
Dep. of Statistics and Department of Political Science
Columbia University, New York
gelman@stat.columbia.edu

http: // www. stat. columbia. edu/ ~gelman/

Antony Unwin
Department of Mathematics
University of Augsburg
unwin@math.uni-augsburg.de

http: // www. rosuda. org

Sex
Class
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Figure 3: A doubledecker plot showing the survival rates on the Titanic by sex and, within sex, by class.
This graph shows several interesting comparisons but could benefit from improvement in graphic design.
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Heuristic Methods in Finance
Enrico Schumann and David Ardia 1

Heuristic optimization methods and their applica-
tion to finance are discussed. Two illustrations of
these methods are presented: the selection of assets
in a portfolio and the estimation of a complicated
econometric model.

Heuristic methods in Finance

Models in finance

Finance is, at its very heart, all about optimization.
In financial theory, decision makers are optimiz-
ers: households maximize their utility, firms max-
imize profits or minimize costs. In more applied
work, we may look for portfolios that best match
our preferences, or for trading rules that find the
ideal point in time for buying or selling an asset.
And of course, the ubiquitous estimation or calibra-
tion of model parameters is nothing but optimiza-
tion.

In this note we will describe a type of numeri-
cal techniques, so-called heuristics, that can be used
to solve optimization models. An optimization
model consists of an objective function and pos-
sibly a number of constraints, i.e., the model is a
precise, mathematical description of a given prob-
lem. But the process of financial modeling com-
prises two stages. We start with an actual problem –
such as “how to invest?” – and translate this prob-
lem into a model; then we move from the model to
its numerical solution. We will be concerned with
the second stage. Yet we cannot overemphasize the
importance of the first stage. It may be interesting
to work on a challenging optimization model, but if
the model is not useful than neither is its solution.

It turns out that many financial models are dif-
ficult to solve. For combinatorial models it is the
size of the search space that causes trouble. Such
problems typically have an exact solution method –
write down all possible solutions and pick the best
one – but this approach is almost never feasible
for realistic problem sizes. For continuous prob-
lems, issues arise when the objective function is

not smooth (e.g., has discontinuities or is noisy), or
there are many local optima. Even in the contin-
uous case we could attempt complete enumeration
by discretizing the domain of the objective function
and running a grid search. But again this approach
is not feasible in practice once the dimensionality of
the model grows.

Researchers and operators in finance often go
a long way to make models tractable, that is, to
formulate them such that they can compute the
quantities of interest either in closed form or with
the computational tools that are at hand. When
it comes to optimization, models are often shaped
such that they can be solved with “classical” opti-
mization techniques like linear and quadratic pro-
gramming. But this comes at a price: we have to
construct the model in such a way that it fulfills
the requirements of the particular method. For in-
stance, we may need to choose a quadratic objective
function, or approximate integers with real num-
bers. To paraphrase John Tukey, when we solve
such a model we get a precise answer but it be-
comes more difficult to say if we have asked the
right question.

An alternative strategy is the use of heuris-
tic optimization techniques, or heuristics for short.
Heuristics aim at providing good and fast approx-
imations to optimal solutions; to stay with Tukey’s
famous statement, heuristics may be described as
seeking approximate answers to the right ques-
tions. (In theory, the solution of a model is the op-
timum; it is not necessary to speak of optimal solu-
tions. But practically a solution is rather the result
that we get from a piece of software, so it is mean-
ingful to distinguish between good and bad solu-
tions.) Optimization heuristics are often very sim-
ple, easy to implement and to use; there are essen-
tially no constraints on the model formulation; and
any changes to the model are quickly implemented.
But of course, there must be a downside: heuris-
tics do not provide the exact solution of the model
but only a stochastic approximation. Yet such an
approximation may still be better than a poor de-
terministic solution or no solution at all. If a model
can be solved with a classical method, it is no use to
try a heuristic. The advantage comes when classical

1The views expressed in this paper are the sole responsibility of the authors and do not necessarily reflect those of VIP Value
Investment Professionals AG, aeris CAPITAL AG or any of their affiliates. Any remaining errors or shortcomings are the authors’
responsibility.
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methods cannot solve the given model, i.e., when a
model is difficult. Such models are far more com-
mon in finance that is sometimes thought.

What is a heuristic?

The aim in optimization is to

minimize
x

f (x, data)

with f a scalar-valued function, and x a vector
of decision variables. To maximize a function f ,
we minimize − f . In most cases, this optimization
problem will be constrained. Optimization heuris-
tics are a class of numerical methods that can solve
such problems. Well-known examples are Simu-
lated Annealing, Genetic Algorithms (or, more gen-
erally, Evolutionary Algorithms) or Tabu Search. It
is hard to give a general definition of what con-
stitutes a heuristic. Typically, the term is charac-
terized through several criteria such as the follow-
ing (e.g., Zanakis and Evans [12], Barr et al. [2]):
(i) the method should give a “good” stochastic ap-
proximation of the true optimum, with “goodness”
measured by computing time or solution quality,
(ii) the method should be robust to changes in
the given problem, in particular the problem size,
(iii) the technique should be easy to implement, and
(iv) implementing and using the technique should
not require any subjective elements. Of course,
such a definition is not unambiguous, and even in
the optimization literature the term is used with
different meanings.

How do heuristics work?

Very roughly, we can divide heuristics into iter-
ative search methods and constructive methods.
Constructive methods start with an empty solution
and then build a solution in a stepwise manner by
adding components until a solution is completed.
An example: in a Traveling Salesman Problem we
are given a set of cities and the distances between
them. The aim is to find the route of minimal length
such that each city is visited once. We could start
with one city and then add the remaining cities one
at a time (e.g., always choosing the nearest city) un-
til a complete tour is created. The procedure termi-
nates once we have found one complete solution.

For iterative search methods, we repeatedly
change an existing complete solution to obtain a
new solution. Such methods are far more relevant

in finance, so we will concentrate on them. To de-
scribe an iterative search method, we need to spec-
ify (i) how we generate new solutions from existing
solutions, (ii) when to accept such a new solution,
and (iii) when to stop the search. These three de-
cisions define a particular method; in fact, they are
the building blocks of many optimization methods,
not just of heuristics. As an example, think of a
steepest descent method. Suppose we have a cur-
rent (or initial) solution xc and want to find a new
solution xn. Then the rules could be as follows:

(i) We estimate the slope (the gradient) of f at xc

which gives us the search direction. The new
solution xn is then xc − step size · ∇ f (xc).

(ii) If f (xn) < f (xc) we accept xn, i.e., we re-
place xc by xn.

(iii) We stop if no further improvements in f can
be found, or if we reach a maximum number
of function evaluations.

Problems will mostly occur with steps (i)
and (ii). There are models in which the gradi-
ent does not exist, or cannot be computed mean-
ingfully (e.g., when the objective function is not
smooth). Hence we may need other approaches
to compute a search direction. The acceptance-
criterion for a steepest descent is strict: if there is no
improvement, a candidate solution is not accepted.
But if the objective function has several minima,
this means we will never be able to move away
from a local minimum, even if it is not the globally
best one.

Heuristics follow the same basic pattern (i)–(iii),
but they have different rules that are better suited
for problems with noisy objective functions or mul-
tiple minima. In fact, almost all heuristics use one
or both of the following principles.

Trust your luck Classical methods are determinis-
tic: given a starting value, they will always
lead to the same solution. Heuristics make
deliberate use of randomness. New solutions
may be created by randomly changing old so-
lutions, or we may accept new solutions only
with a given probability.

Don’t be greedy When we compute new candi-
date solutions in the steepest descent method,
we choose a (locally) optimal search direction
(it is steepest descent after all). Many heuris-
tics put up with “good” search directions, in
many cases even random directions. Also,
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heuristics generally do not enforce contin-
uous improvements; inferior solutions may
be accepted. This is inefficient for a well-
behaved problem with a single optimum, but
it allows these methods to move away from
local minima.

As a concrete example, we look at Threshold
Accepting (a variant of Simulated Annealing).

(i) We randomly choose an xn close to xc. For in-
stance, when we estimate the parameter val-
ues of a statistical model, we could randomly
pick one of the parameters and perturb it by
adding a bit of noise.

(ii) If f (xn) < f (xc) we accept xn, as before. But
if f (xn) > f (xc), we also accept it as long
as f (xn)− f (xc) is smaller than a fixed thresh-
old (which explains the method’s name), i.e.,
we accept a new solution that is worse than
its predecessor, as long as it is not too much
worse. Thus, we can think of Threshold Ac-
cepting as a biased random walk. (Simulated
Annealing works the same, but we would ac-
cept an inferior solution with a certain proba-
bility.)

(iii) We stop, say, after a fixed number iterations.

Stochastic solutions

Almost all heuristics are stochastic algorithms.
Running the same technique twice, even with the
same starting values, will typically result in differ-
ent solutions. Thus, we can treat the result (i.e.,
the decision variables x and the associated objective
function value) of a optimization heuristic as a ran-
dom variable with some distribution D. We do not
know what D looks like, but there is a simple way
to find out for a given problem: we run a reason-
ably large number of restarts, for each restart we
store the results, and finally we compute the em-
pirical distribution function of these results as an
estimate for D. For a given problem (often problem
class), the shape of D will depend on the chosen
method. Some techniques will be more appropri-
ate than others and give less variable and on aver-
age better results. And D will often depend on the
settings of the method, most importantly the num-
ber of iterations – the search time – that we allow
for.

Unlike classic optimization techniques, heuris-
tics can escape from local minima. Intuitively then,
if we let the algorithm search for longer, we can
hope to find better solutions. Thus the shape of D
is strongly influenced by the amount of computa-
tional resources spent (often measured by the num-
ber of objective function evaluations). For min-
imization problems, when we increase computa-
tional resources, the mass of D will move to the
left, and the distribution will become less variable.
Ideally, when we let the computing time grow ever
longer, D should degenerate into a single point, the
global minimum. Unfortunately, it’s never possible
to ensure this practically.

Illustrations

Asset selection with Local Search

We can make these ideas more concrete through an
example, taken from Gilli et al. [5]; sample code is
given in the book. Suppose we have a universe of
500 assets (for example, mutual funds), completely
described by a given variance–covariance matrix,
and we are asked to find an equal-weight portfolio
with minimal variance under the constraints that
we have only between Kinf and Ksup assets in the
portfolio. This is a combinatorial problem, and here
are several strategies to obtain a solution.

(1) Write down all portfolios with feasible cardi-
nality, compute the variance of each portfolio,
and pick the one with the lowest variance.

(2) Choose k portfolios randomly and keep the
one with the lowest variance.

(3) Sort the assets by their marginal variance.
Then construct an equal-weight portfolio of
the Kinf assets with the lowest variance, then a
portfolio of the Kinf + 1 assets with the lowest
variance, and so on to a portfolio of the Ksup
assets with the lowest variance. Of those
Ksup − Kinf + 1 portfolios, pick the one with
the lowest variance.

Approach (1) is infeasible. Suppose we were to
check cardinalities between 100 and 150. For 100
out of 500 alone we have 10107 possibilities, and
that leaves us 101 out of 500, 102 out of 500, and
so on. Even if we could evaluate millions of portfo-
lios in a second it would not help. Approach (2)
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has the advantage that it is simple, and we can
scale computational resources (increase k). That is,
we can use the trade-off between available comput-
ing time and solution quality. Approach (2) can be
thought of as a sample substitute for Approach (1).
In Approach (3) we ignore the covariation of as-
sets (i.e., we only look at the main diagonal of the
variance–covariance matrix), but we only have to
check Ksup − Kinf + 1 portfolios. There may be
cases, however, in which we would wish to include
correlation.

We set up an experiment. We create an artifi-
cial data set of 500 assets, each with a randomly
assigned volatility (the square root of variance) of
between 20% and 40%. Each pairwise correlation
is set to 0.6. We compute “best-of-k” portfolios (i.e.,
Approach (2)): we sample 1000 portfolios, and only
keep the best one; we also try “best-of-100 000”
portfolios and, for intuition, “best-of-1” portfolios
(i.e., purely random ones).

Figure 1, in its upper panel, shows the esti-
mated cumulative distribution functions of port-
folio volatilities; each curve is obtained from 500
restarts. Such an empirical distribution function
is an estimate of D for the particular method. We
see that completely random portfolios produce a
distribution with a median of about 23.5%. (What
would happen if we drew more portfolios? The
shape of D would not change, since we are merely
increasing our sample size. But our estimates of
the tails would become more precise.) We also plot
the distribution of the “best-of-1000” and “best-of-
100 000” portfolios. For this latter strategy, we get
a median volatility below 21%. We also add the re-
sults for Approach (3); there are no stochastics in
this strategy.

Now let us try a heuristic. We use a simple Local
Search. We start with a random feasible portfolio
and compute its volatility. This is our current solu-
tion xc, the best solution we have so far. We now try
to improve it iteratively. In each iteration we com-
pute a new portfolio xn as follows. We randomly
pick one asset from our universe. If this asset is al-
ready in the portfolio, we remove it; if it is not in the
portfolio, we add it. Then we compute the volatil-
ity of this new portfolio. If it is lower than the old
portfolio’s volatility, we keep the new portfolio, i.e.,
xn replaces xc; if not, we stick with xc. We include
constraints in the simplest way: if a new portfolio
has too many or too few assets, we always consider
it worse than its predecessor and reject it. We run

this search with 100, 1000, and 10 000 iterations. For
each setting, we conduct 500 restarts; each time we
register the final portfolio’s volatility. Results are
shown in the lower panel of Figure 1.
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Figure 1: Upper panel: random portfolios. For ex-
ample: for one restart of the “best-of-100 000” strat-
egy, we sample 100 000 portfolios, and keep the
best one. The distributions are estimated from 500
restarts. The sort-by-marginal-variance approach
is deterministic, so its result is a constant. Lower
panel: Local Search. Each distribution is estimated
from 500 restarts.

Already with 1000 iterations we are clearly bet-
ter than the “best-of-100 000” strategy (though we
have used only one-hundredth of the function eval-
uations). With 10 000 iterations we seem to con-
verge to a point at about 16%. A few remarks: first,
we have no proof that we have found the global
optimum. But we can have some confidence that
we have found a good solution. Second, we can
practically make the variance of D as small as we
want. With more iterations (and possibly a few
other refinements), we could, for all practical pur-
poses, have the distribution “converge”. But, third,
in many cases we do not need to have D collapse;
for financial problems a good solution is fine, given
the quality of financial data [6, 7].
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Econometric model fitting with Differen-
tial Evolution

Our second illustration is taken from Mullen et al.
[8], who consider the estimation of a Markov-
switching GARCH (MSGARCH) model. MS-
GARCH are econometric models used to forecast
the volatility of financial time series, which is of
primary importance for financial risk management.
The estimation of MSGARCH models is a non-
linear constrained optimization problem and is a
difficult task in practice. A robust optimizer is thus
required. In that regard, the authors report the best
performance of the Differential Evolution (DE) al-
gorithm compared with traditional estimation tech-
niques.

DE is a search heuristic introduced by Storn
and Price [10] and belongs to the class of evolu-
tionary algorithms. The algorithm uses biology-
inspired operations of crossover, mutation, and se-
lection on a population in order to minimize an ob-
jective function over the course of successive gener-
ations. Its remarkable performance as a global op-
timization algorithm on continuous problems has
been extensively explored; see, e.g., Price et al. [9].

Let NP denote the number of parameter vec-
tors (members) x ∈ Rd in the population, where
d denotes the dimension. In order to create the ini-
tial generation, NP guesses for the optimal value
of the parameter vector are made, either using ran-
dom values between bounds or using values given
by the user. Each generation involves creation of a
new population from the current population mem-
bers {xi | i = 1, . . . , NP}, where i indexes the vec-
tors that make up the population. This is accom-
plished using differential mutation of the population
members. An initial mutant parameter vector vi is
created by choosing three members of the popula-
tion, xi1 , xi2 and xi3 , at random. Then vi is gen-
erated as vi = xi1 + F · (xi2 − xi3), where F is a
positive scale factor whose effective values are typ-
ically less than one. After the first mutation opera-
tion, mutation is continued until d mutations have
been made, with a given crossover probability. The
crossover probability controls the fraction of the pa-
rameter values that are copied from the mutant.
Mutation is applied in this way to each member of
the population. The objective function values as-
sociated with the children are then determined. If
a trial vector has equal or lower objective function
value than the previous vector it replaces the previ-
ous vector in the population; otherwise the previ-

ous vector remains. Note that DE uses both strate-
gies described above to overcome local minima: it
does not only keep the best solution but accepts in-
ferior solutions, too; the method evolves a whole
population of solutions in which some solutions are
worse than others. And DE has a chance ingredient
as it randomly chooses solutions to be mixed and
mutated. For more details, see Price et al. [9] and
Storn and Price [10].

We report below some results of Mullen et al.
[8], who fit their model to the Swiss Market In-
dex. For the DE optimization, the authors rely on
the package DEoptim [1] which implements DE in
the R language [3]. For comparison, the model is
also estimated using standard unconstrained and
constrained optimization routines available in R
as well as more complex methods able to handle
non-linear equality and inequality constraints. The
model estimation is run 50 times for all optimiza-
tion routines, where random starting values in the
feasible parameter set are used when needed (us-
ing the same random starting values for the various
methods). Boxplots of the objective function (i.e.,
the negative log-likelihood function, which must
be minimized) at optimum for convergent estima-
tions is displayed in Figure 2. We notice that stan-
dard approaches (i.e., function optim with all meth-
ods) perform poorly compared with the optimiz-
ers that can handle more complicated constraints
(i.e., functions constrOptim, constrOptim.nl and
solnp). DE compares favorably with the two best
competitors in terms of negative log-likelihood val-
ues and is more stable over the runs.

Conclusion

In this note, we have briefly described optimization
heuristics, but of course we could only scratch the
surface of how these methods work and where they
can be applied. After all, for most people optimiza-
tion is a tool, and what matters is how this tool is
applied. Heuristics offer much in this regard: they
allow us to solve optimization models essentially
without restrictions on the functional form of the
objective function or the constraints. Thus, when
it comes to evaluating, comparing, and selecting
models, researchers and operators can focus more
on a model’s financial or empirical qualities instead
of having to worry about how to handle it numer-
ically. We have argued initially that financial mod-
eling comprises two stages: putting an actual prob-
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Figure 2: Boxplots of the 50 values of the objective function (i.e., the negative log-likelihood) at opti-
mum obtained by the various optimizers available in R. Function optim with method "Nelder-Mead" (un-
constrained), method "BFGS" (unconstrained), method "CG" (unconstrained), method "L-BFGS-B" (con-
strained), method "SANN" (unconstrained), function constrOptim (constrained), function constrOptim.nl

of the package alabama [11], function solnp of the package Rsolnp [4], function DEoptim of the package
DEoptim [1]. More details can be found in Mullen et al. [8].

lem into model form, and then solving this model.
With heuristics, we become much more powerful at
the second stage; it remains to use this power in the
first stage.
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poole@research.att.com

(973) 360-7337

Chris Volinsky, Program Chair-Elect
volinsky@research.att.com

(973) 360-8644

Hadley A. Wickham, Publications Officer
hadley@rice.edu

(515) 450-8171

John Castelloe, Computing
Section Representative
John.Castelloe@sas.com

(919) 531-5728

Rick G. Peterson (see right)

Nicholas Lewin-Koh, Newsletter Editor
lewin-koh.nicholas@gene.com

Statistical Graphics
Section Officers 2011

Juergen Symanzik, Chair
symanzik@math.usu.edu

(435) 797-0696

Simon Urbanek, Past-Chair
urbanek@research.att.com

(973) 360-7056

Heike Hofmann, Chair-Elect
hofmann@iastate.edu

(515) 294-8948

John W. Emerson, Secretary/ Treasurer
john.emerson@yale.edu

(203) 215-3540

Mark Greenwood, GRPH COS Rep 10-12
greenwood@math.montana.edu|
(406) 994-1962

Michael Lawrence, GRPH COS Rep 11-13
michafla@gene.com

(515) 708-3239

Webster West, Program Chair
websterwest@yahoo.com

(803) 351-5087

Hadley A. Wickham, Program Chair-Elect
hadley@rice.edu

(515) 450-8171

Donna F. Stroup, Council of Sections
donnafstroup@dataforsolutions.com

(404) 218-0841

Rick G. Peterson, ASA Staff Liaison
rick@amstat.org

(703) 684-1221

Martin Theus, Newsletter Editor
martin@theusRus.de
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The Statistical Computing & Statistical Graphics
Newsletter is a publication of the Statistical Comput-
ing and Statistical Graphics Sections of the ASA. All
communications regarding the publication should be
addressed to:

Nicholas Lewin-Koh
Editor Statistical Computing Section
lewin-koh.nicholas@gene.com

Martin Theus
Editor Statistical Graphics Section
martin@theusRus.de

All communications regarding ASA membership and
the Statistical Computing and Statistical Graphics
Section, including change of address, should be sent
to

American Statistical Association
1429 Duke Street
Alexandria, VA 22314-3402 USA
TEL (703) 684-1221
FAX (703) 684-2036
asainfo@amstat.org
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